Research Article
BibTex RIS Cite

Multi-Compartmental Modeling for Extracellular Stimulation of Neocortex

Year 2021, , 76 - 80, 01.12.2021
https://doi.org/10.31590/ejosat.1013879

Abstract

Aim: To explore the natural origin and changing behavior of neural responses depending on varying conditions, computational modeling of single-neuron or cluster of neurons using multi-compartmental models can provide very consistent predictions integrating with experimental work.
Neural electrodes are fundamental therapeutic and diagnostic tools for a large variety of conditions. Understanding, individually or together neuronal responses, is critical for therapeutic and diagnostic techniques while dealing with certain neuropathies like Epilepsy or Parkinson's. The electrodes with different sizes and materials are the only way to interface the nervous system when it is needed to restore sensory or motor functions somehow.
Material Method: Multi-compartmental neuron model is prepared by using a neuron with 3D realistic morphology from the neocortex. It is analyzed to see neurons' response to extracellular stimulation using a point source situated in two different locations, one at a time. Ideal conditions are considered for the point source. NEURON v8.0 is used for simulations. The stimulation pulse width, frequency, and amplitude are 1 ms, 20 Hz, and 250 nA respectively.
Results: It is seen that the extracellular voltage profile is as expected, then it shifts towards where the stimulation electrode is moved. Closer neural compartments are better targets to generate action potential first. The effect of extracellular stimulation decreases as it moves from the source, but other compartments that are relatively in distance can also generate an action potential in several milliseconds after stimulation onset.
Conclusion: Findings confirm multi-compartmental models are well-suited to predict neuronal responses. Different numbers and types of neurons' responses can be examined together with a complex realistic morphology. Parameters related to experimental conditions, like stimulation and recording, can also be analyzed.

Thanks

This work is supported by the Fulbright Scholar Program with an ID of PS00304539.

References

  • Viventi, J., Kim, D. H., Vigeland, L., Frechette, E. S., Blanco, J. A., Kim, Y. S., ... & Litt, B. (2011). Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nature neuroscience, 14(12), 1599-1605.
  • Rosin, B., Slovik, M., Mitelman, R., Rivlin-Etzion, M., Haber, S. N., Israel, Z., ... & Bergman, H. (2011). Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron, 72(2), 370-384.
  • Wray, C. D., Blakely, T. M., Poliachik, S. L., Poliakov, A., McDaniel, S. S., Novotny, E. J., ... & Ojemann, J. G. (2012). Multimodality localization of the sensorimotor cortex in pediatric patients undergoing epilepsy surgery. Journal of Neurosurgery: Pediatrics, 10(1), 1-6.
  • Schroeder, K. E., & Chestek, C. A. (2016). Intracortical brain-machine interfaces advance sensorimotor neuroscience. Frontiers in neuroscience, 10, 291.
  • Moxon, K. A., & Foffani, G. (2015). Brain-machine interfaces beyond neuroprosthetics. Neuron, 86(1), 55-67. Moffitt, M. A., & McIntyre, C. C. (2005). Model-based analysis of cortical recording with silicon microelectrodes. Clinical neurophysiology, 116(9), 2240-2250.
  • Jorfi, M., Skousen, J. L., Weder, C., & Capadona, J. R. (2014). Progress towards biocompatible intracortical microelectrodes for neural interfacing applications. Journal of neural engineering, 12(1), 011001.
  • Luan, L., Wei, X., Zhao, Z., Siegel, J. J., Potnis, O., Tuppen, C. A., ... & Xie, C. (2017). Ultraflexible nanoelectronic probes form reliable, glial scar–free neural integration. Science advances, 3(2), e1601966.
  • Patel, P. R., Zhang, H., Robbins, M. T., Nofar, J. B., Marshall, S. P., Kobylarek, M. J., ... & Chestek, C. A. (2016). Chronic in vivo stability assessment of carbon fiber microelectrode arrays. Journal of neural engineering, 13(6), 066002.
  • Biran, R., Martin, D. C., & Tresco, P. A. (2005). Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays. Experimental neurology, 195(1), 115-126.
  • Holt, G. R., & Koch, C. (1999). Electrical interactions via the extracellular potential near cell bodies. Journal of computational neuroscience, 6(2), 169-184.
  • Degenhart, A. D., Eles, J., Dum, R., Mischel, J. L., Smalianchuk, I., Endler, B., ... & Cui, X. T. (2016). Histological evaluation of a chronically-implanted electrocorticographic electrode grid in a non-human primate. Journal of neural engineering, 13(4), 046019.
  • Nguyen, J. K., Park, D. J., Skousen, J. L., Hess-Dunning, A. E., Tyler, D. J., Rowan, S. J., ... & Capadona, J. R. (2014). Mechanically-compliant intracortical implants reduce the neuroinflammatory response. Journal of neural engineering, 11(5), 056014.
  • Khodagholy, D., Gelinas, J. N., Thesen, T., Doyle, W., Devinsky, O., Malliaras, G. G., & Buzsáki, G. (2015). NeuroGrid: recording action potentials from the surface of the brain. Nature neuroscience, 18(2), 310-315.
  • Badia, J., Boretius, T., Andreu, D., Azevedo-Coste, C., Stieglitz, T., & Navarro, X. (2011). Comparative analysis of transverse intrafascicular multichannel, longitudinal intrafascicular and multipolar cuff electrodes for the selective stimulation of nerve fascicles. Journal of neural engineering, 8(3), 036023.
  • Bucksot, Jesse E., et al. "Flat electrode contacts for vagus nerve stimulation." PloS one 14.11 (2019): e0215191.
  • Grill, W. M., S. E. Cooper, and E. B. Montgomery. "Effect of stimulus waveform on tremor suppression and paresthesias evoked by thalamic deep brain stimulation." Society for Neuroscience Abstracts. Vol. 29. 2003.
  • Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of physiology, 117(4), 500-544.
  • Haberly, L. B. (1990). Comparative aspects of olfactory cortex. In Cerebral cortex (pp. 137-166). Springer, Boston, MA.
  • Mainen, Z. F., Joerges, J., Huguenard, J. R., & Sejnowski, T. J. (1995). A model of spike initiation in neocortical pyramidal neurons. Neuron, 15(6), 1427-1439.
  • Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience: computational and mathematical modeling of neural systems. Computational Neuroscience Series.

Neokorteksin Hücre Dışı Uyarılmasına Yönelik Çok Bölmeli Modelleme

Year 2021, , 76 - 80, 01.12.2021
https://doi.org/10.31590/ejosat.1013879

Abstract

Amaç: Değişen koşullara bağlı olarak nöral yanıtların doğal kökenini ve değişen davranışını araştırmak için, çok bölmeli modeller kullanarak tek nöron veya nöron kümesinin hesaplamalı modellemesi, deneysel çalışma ile bütünleşen çok tutarlı tahminler sağlayabilir.
Nöral elektrotlar, çok çeşitli koşullar için temel terapötik ve teşhis araçlarıdır. Epilepsi veya Parkinson gibi belirli nöropatilerle uğraşırken, tek tek veya birlikte nöronal tepkileri anlamak, terapötik ve tanısal teknikler için kritik öneme sahiptir. Farklı boyut ve malzemelere sahip elektrotlar, duyusal veya motor işlevlerin bir şekilde yeniden sağlanması gerektiğinde sinir sistemiyle arayüz oluşturmanın tek yoludur.
Gereç Yöntemi: Neokorteksten alınan 3B gerçekçi morfolojiye sahip bir nöron kullanılarak çok bölmeli nöron modeli hazırlanır. Her seferinde bir tane olmak üzere iki farklı yerde bulunan bir nokta kaynağı kullanılarak nöronların hücre dışı uyarıma tepkisini görmek için analiz edilir. Nokta kaynak için ideal koşullar göz önünde bulundurulur. NEURON v8.0 simülasyonlar için kullanılır. Stimülasyon darbe genişliği, frekansı ve genliği sırasıyla 1 ms, 20 Hz ve 250 nA'dır.
Bulgular: Hücre dışı voltaj profilinin beklendiği gibi olduğu, ardından stimülasyon elektrotunun hareket ettiği yere doğru kaydığı görüldü. Daha yakın nöral bölmeler, önce aksiyon potansiyeli oluşturmak için daha iyi hedeflerdir. Kaynaktan hareket ettikçe hücre dışı stimülasyonun etkisi azalır, ancak nispeten uzakta olan diğer kompartmanlar da stimülasyonun başlamasından birkaç milisaniye sonra bir aksiyon potansiyeli oluşturabilir.
Sonuç: Bulgular, çok bölmeli modellerin nöronal tepkileri tahmin etmek için çok uygun olduğunu doğrulamaktadır. Farklı sayı ve tipteki nöronların tepkileri, karmaşık bir gerçekçi morfoloji ile birlikte incelenebilir. Stimülasyon ve kayıt gibi deneysel koşullarla ilgili parametreler de analiz edilebilir.

References

  • Viventi, J., Kim, D. H., Vigeland, L., Frechette, E. S., Blanco, J. A., Kim, Y. S., ... & Litt, B. (2011). Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nature neuroscience, 14(12), 1599-1605.
  • Rosin, B., Slovik, M., Mitelman, R., Rivlin-Etzion, M., Haber, S. N., Israel, Z., ... & Bergman, H. (2011). Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron, 72(2), 370-384.
  • Wray, C. D., Blakely, T. M., Poliachik, S. L., Poliakov, A., McDaniel, S. S., Novotny, E. J., ... & Ojemann, J. G. (2012). Multimodality localization of the sensorimotor cortex in pediatric patients undergoing epilepsy surgery. Journal of Neurosurgery: Pediatrics, 10(1), 1-6.
  • Schroeder, K. E., & Chestek, C. A. (2016). Intracortical brain-machine interfaces advance sensorimotor neuroscience. Frontiers in neuroscience, 10, 291.
  • Moxon, K. A., & Foffani, G. (2015). Brain-machine interfaces beyond neuroprosthetics. Neuron, 86(1), 55-67. Moffitt, M. A., & McIntyre, C. C. (2005). Model-based analysis of cortical recording with silicon microelectrodes. Clinical neurophysiology, 116(9), 2240-2250.
  • Jorfi, M., Skousen, J. L., Weder, C., & Capadona, J. R. (2014). Progress towards biocompatible intracortical microelectrodes for neural interfacing applications. Journal of neural engineering, 12(1), 011001.
  • Luan, L., Wei, X., Zhao, Z., Siegel, J. J., Potnis, O., Tuppen, C. A., ... & Xie, C. (2017). Ultraflexible nanoelectronic probes form reliable, glial scar–free neural integration. Science advances, 3(2), e1601966.
  • Patel, P. R., Zhang, H., Robbins, M. T., Nofar, J. B., Marshall, S. P., Kobylarek, M. J., ... & Chestek, C. A. (2016). Chronic in vivo stability assessment of carbon fiber microelectrode arrays. Journal of neural engineering, 13(6), 066002.
  • Biran, R., Martin, D. C., & Tresco, P. A. (2005). Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays. Experimental neurology, 195(1), 115-126.
  • Holt, G. R., & Koch, C. (1999). Electrical interactions via the extracellular potential near cell bodies. Journal of computational neuroscience, 6(2), 169-184.
  • Degenhart, A. D., Eles, J., Dum, R., Mischel, J. L., Smalianchuk, I., Endler, B., ... & Cui, X. T. (2016). Histological evaluation of a chronically-implanted electrocorticographic electrode grid in a non-human primate. Journal of neural engineering, 13(4), 046019.
  • Nguyen, J. K., Park, D. J., Skousen, J. L., Hess-Dunning, A. E., Tyler, D. J., Rowan, S. J., ... & Capadona, J. R. (2014). Mechanically-compliant intracortical implants reduce the neuroinflammatory response. Journal of neural engineering, 11(5), 056014.
  • Khodagholy, D., Gelinas, J. N., Thesen, T., Doyle, W., Devinsky, O., Malliaras, G. G., & Buzsáki, G. (2015). NeuroGrid: recording action potentials from the surface of the brain. Nature neuroscience, 18(2), 310-315.
  • Badia, J., Boretius, T., Andreu, D., Azevedo-Coste, C., Stieglitz, T., & Navarro, X. (2011). Comparative analysis of transverse intrafascicular multichannel, longitudinal intrafascicular and multipolar cuff electrodes for the selective stimulation of nerve fascicles. Journal of neural engineering, 8(3), 036023.
  • Bucksot, Jesse E., et al. "Flat electrode contacts for vagus nerve stimulation." PloS one 14.11 (2019): e0215191.
  • Grill, W. M., S. E. Cooper, and E. B. Montgomery. "Effect of stimulus waveform on tremor suppression and paresthesias evoked by thalamic deep brain stimulation." Society for Neuroscience Abstracts. Vol. 29. 2003.
  • Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of physiology, 117(4), 500-544.
  • Haberly, L. B. (1990). Comparative aspects of olfactory cortex. In Cerebral cortex (pp. 137-166). Springer, Boston, MA.
  • Mainen, Z. F., Joerges, J., Huguenard, J. R., & Sejnowski, T. J. (1995). A model of spike initiation in neocortical pyramidal neurons. Neuron, 15(6), 1427-1439.
  • Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience: computational and mathematical modeling of neural systems. Computational Neuroscience Series.
There are 20 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mahmut Emin Çelik 0000-0002-1766-5514

Publication Date December 1, 2021
Published in Issue Year 2021

Cite

APA Çelik, M. E. (2021). Multi-Compartmental Modeling for Extracellular Stimulation of Neocortex. Avrupa Bilim Ve Teknoloji Dergisi(29), 76-80. https://doi.org/10.31590/ejosat.1013879