Research Article
BibTex RIS Cite

Dokunmatik Yüzeylerde Yerel Dokunsal Geri Bildirime Doğru: Piezo Yamalar Tarafından Çalıştırılan Titreşimli Bir Dokunmatik Ekranın Sonlu Elemanlar Analizi

Year 2021, , 214 - 218, 01.12.2021
https://doi.org/10.31590/ejosat.1014803

Abstract

Yüzey haptik teknolojileri, parmak ve dokunmatik ekran arasında benzersiz ve ayırt edici bir etkileşim sağlayarak artırılmış bir kullanıcı deneyimi sunar. Bu çalışmada, yüzeyinde bulunan piezo yamalar aracılığıyla kullanıcıya vibrotaktil dokunsal geri bildirim gösteren bir dokunmatik ekran tasarımına odaklanılmıştır. ANSYS FEM yazılım paketini kullanarak, dokunmatik yüzeyde en yüksek deformasyonu sağlayacak ekran ve piezo yama malzemelerinin, sınır koşullarının ve piezo konfigürasyonunun etkilerini insan dokunsal algısının en hassas olacağı frekansı göz önünde bulundurarak araştırdık. Analizimizde üç farklı dokunmatik yüzey ve piezo yama malzemesi, üç farklı sınır koşulu, dört farklı piezo konumu ve üç farklı dokunmatik yüzey kalınlığı kullandık. Sonuçlar, camın sınır koşullarının ve kalınlığının dokunmatik yüzeyin ilk doğal frekansı üzerinde önemli bir etkiye sahip olduğunu ve dokunmatik yüzeyin dört tarafına dört piezo yamasının sabitlenmesiyle en iyi insan dokunma algısını sağlayacak sonuçların elde edildiğini gösterdiModal analizlerde belirlenen konfigürasyon baz alınarak, dokunmatik ekranda maksimum deformasyonun başarılacağı dokunmatik ekranın geometrisini (genişlik, yükseklik, kalınlık) hesaplamak için bir tepki yüzeyi optimizasyonu çalışması gerçekleştirdik. 160 × 90 × 0.28 mm ve 190 × 110 × 0.4 mm boyutlarıyla en iyi konfigürasyonu (yaklaşık 250 Hz birinci modal frekansta maksimum toplam deformasyon) elde ettik. Gelecekte, FEM simülasyonlarının sonuçlarına bağlı olarak tahmin edilecek değişik piezo kombinasyonlarında (tahrik sırası, genliği, ve frekansı) dokunmatik yüzeylerde yerelleştirilmiş dokunsal geri bildirim oluşturacak modeller geliştireceğiz.

References

  • Basdogan, C., Giraud, F., Levesque, V., & Choi, S. (2020). s, 13(3), 450-470.
  • Baylan, B., Aridogan, U., & Basdogan, C. (2012, June). Finite element modeling of a vibrating touch screen actuated by piezo patches for haptic feedback. In International Conference on Human Haptic Sensing and Touch Enabled Computer Applications (pp. 47-57).
  • Sari, G., Akgül, M. B., Kirişken, B., Ak, A. F., & Akiş, A. A. (2017, July). An experimental study of a piezoelectrically actuated touch screen. In 2017 8th International Conference on Mechanical and Aerospace Engineering (ICMAE) (pp. 753-758). IEEE.
  • Ak, A. F., Sari, G., Akgül, M. B., Kirişken, B., & Akiş, A. A. (2017, July). Numerical analysis of vibrating touch screen actuated by piezo elements. In 2017 8th International Conference on Mechanical and Aerospace Engineering (ICMAE) (pp. 775-779). IEEE.
  • Hudin, C., Lozada, J., & Hayward, V. (2013, April). Localized tactile stimulation by time-reversal of flexural waves: Case study with a thin sheet of glass. In 2013 World Haptics Conference (WHC) (pp. 67-72). IEEE.
  • Enferad, E., Giraud-Audine, C., Giraud, F., Amberg, M., & Semail, B. L. (2019). Generating controlled localized stimulations on haptic displays by modal superimposition. Journal of Sound and Vibration, 449, 196-213.
  • Vardar, Y., Güçlü, B., & Basdogan, C. (2017). Effect of waveform on tactile perception by electrovibration displayed on touch screens. IEEE transactions on haptics, 10(4), 488-499.
  • Khuri, A. I., & Mukhopadhyay, S. (2010). Response surface methodology. Wiley Interdisciplinary Reviews: Computational Statistics, 2(2), 128-149.

Towards Localized Tactile Feedback on Touch Surfaces: Finite Element Analysis of a Vibrating Touch Screen Actuated by Piezo Patches

Year 2021, , 214 - 218, 01.12.2021
https://doi.org/10.31590/ejosat.1014803

Abstract

Surface haptics technologies offer an augmented user experience by providing a unique and distinctive interaction between the finger and touchscreen. In this study, we focus on a touch screen design to display vibrotactile tactile feedback to the user through piezo patches located on its surface. We investigated the effects of boundary conditions, piezo configurations, and materials of the touch surface and piezo patches that will achieve the highest deformation on the touch surface, considering the most sensible human tactile perception frequency using the ANSYS FEM software package. In our analysis, we used three different touch surface and piezo patch materials, three different boundary conditions, four different piezo patch locations, and three different touch surface thicknesses. The results showed that the boundary conditions and thickness of the glass have a significant effect on the first natural frequency of the touch surface, and the results leading to best human tactile perception were obtained by fixing four piezo patches at four sides of the touch surface. Based on the determined configuration in the modal analyses, we performed a response surface optimization study to estimate the geometry of the touch surface (width, height, thickness), which will result in maximum deformation on the touch surface. We achieved the best configuration (max total deformation at about 250 Hz first modal frequency) with 160 × 90 × 0.28 mm and 190 × 110 × 0.4 mm dimensions. In the future, we will develop models to render localized tactile feedback on a touchscreen-based on piezo patches operating at various combinations (i.e., sequence, amplitude, frequency), which will be predicted based on the FEM simulations.

References

  • Basdogan, C., Giraud, F., Levesque, V., & Choi, S. (2020). s, 13(3), 450-470.
  • Baylan, B., Aridogan, U., & Basdogan, C. (2012, June). Finite element modeling of a vibrating touch screen actuated by piezo patches for haptic feedback. In International Conference on Human Haptic Sensing and Touch Enabled Computer Applications (pp. 47-57).
  • Sari, G., Akgül, M. B., Kirişken, B., Ak, A. F., & Akiş, A. A. (2017, July). An experimental study of a piezoelectrically actuated touch screen. In 2017 8th International Conference on Mechanical and Aerospace Engineering (ICMAE) (pp. 753-758). IEEE.
  • Ak, A. F., Sari, G., Akgül, M. B., Kirişken, B., & Akiş, A. A. (2017, July). Numerical analysis of vibrating touch screen actuated by piezo elements. In 2017 8th International Conference on Mechanical and Aerospace Engineering (ICMAE) (pp. 775-779). IEEE.
  • Hudin, C., Lozada, J., & Hayward, V. (2013, April). Localized tactile stimulation by time-reversal of flexural waves: Case study with a thin sheet of glass. In 2013 World Haptics Conference (WHC) (pp. 67-72). IEEE.
  • Enferad, E., Giraud-Audine, C., Giraud, F., Amberg, M., & Semail, B. L. (2019). Generating controlled localized stimulations on haptic displays by modal superimposition. Journal of Sound and Vibration, 449, 196-213.
  • Vardar, Y., Güçlü, B., & Basdogan, C. (2017). Effect of waveform on tactile perception by electrovibration displayed on touch screens. IEEE transactions on haptics, 10(4), 488-499.
  • Khuri, A. I., & Mukhopadhyay, S. (2010). Response surface methodology. Wiley Interdisciplinary Reviews: Computational Statistics, 2(2), 128-149.
There are 8 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Nur Lara Alpdoğan 0000-0003-4389-7519

Mehmet Ayyildiz 0000-0003-3411-6215

Publication Date December 1, 2021
Published in Issue Year 2021

Cite

APA Alpdoğan, N. L., & Ayyildiz, M. (2021). Towards Localized Tactile Feedback on Touch Surfaces: Finite Element Analysis of a Vibrating Touch Screen Actuated by Piezo Patches. Avrupa Bilim Ve Teknoloji Dergisi(29), 214-218. https://doi.org/10.31590/ejosat.1014803