Research Article
BibTex RIS Cite

Development Of A Millimeter Wave Eight-Element Phased Array Antenna for 5G Mobile Communications

Year 2021, , 323 - 326, 01.12.2021
https://doi.org/10.31590/ejosat.1018030

Abstract

The fifth generation (5G) mobile communications systems demand millimeter wave (mmWave) bands of the electromagnetic spectrum beside the current sub-6 GHz frequencies. Allocation of mmWave frequencies for the cellular systems will ensure more capacity and higher speed links. For the last few years wireless communications societies in industry and academia have put significant research effort to develop novel and efficient antenna architectures. We need brand-new antenna structures that can overcome the challenges of 5G communications environment such as high propagation loss of mmWaves and the large bandwidth demand of the planned networks. In this paper, a microstrip mmWave antenna array for 5G mobile phone terminals is introduced. First, the single antenna element with the rectangular patch radiator is investigated. The numerical investigation is carried out with a full-wave electromagnetic solver. The single antenna design operates between 27.1 GHz – 28.95 GHz frequencies. The proposed antenna based on microstrip approach shows low profile characteristics without compromising performance. A maximum gain of ~7.7 dBi is achieved within the operation band. Then eight-element phased array implementation of the proposed antenna is analyzed. Uniformly spaced linear array method is used with ~λ/2 spacing in the configuration. The eight-element array boosts the maximum total gain value up to ~ 15 dBi, and yields beam steering at broadside up to ∓50° with low side lob levels (SLL). Furthermore, the proposed phased array design is compact with the dimensions of 10 mm×48.6 mm×0.51 mm, and therefore it is compatible with the mmWave band radio frequency integrated circuit (RFIC) transceivers.

References

  • IMT Vision’S Framework and Overall Objectives of the Future Development of IMT for 2020 and Beyond, document Rec. ITU-R M.2083-0, ITUR. (2015). Geneva, Switzerland, Sep.
  • Further Notice of Proposed Rulemaking, FCC 16-89. (2015). Washington, DC, USA, Jul.
  • Boccardi, F., Heath, R. W., Lozano A., Marzetta, T. L. and Popovski, P. (2014). Five disruptive technology directions for 5G. IEEE Communications Magazine, 52(2), 74-80.
  • Lota, J, Sun, S., Rappaort, T. S. and Demosthenous A. (2017). 5G Uniform Linear Arrays With Beamforming and Spatial Multiplexing at 28, 37, 64, and 71 GHz for Outdoor Urban Communication: A Two-Level Approach. IEEE Transactions on Vehicular Technology, 66(11), 9972-9985.
  • Ozpinar, H. and Aksimsek, S. (2021). Design of 24-28 GHz band 5G Antenna Based on Symmetrically Located Circular Gaps. European Journal of Science and Technology, Special Issue, pp. 408-413.
  • Park, J., Ko, J., Kwon, H., Kang, B., Park B., and Kim, D. (2016). A Tilted Combined Beam Antenna for 5G Communications Using a 28-GHz Band. IEEE Antennas and Wireless Propagation Letters, 15, 1685-1688.
  • Zhang, Y., Deng, J., Li, M., Sun, D., and Guo, L. (2019). A MIMO Dielectric Resonator Antenna With Improved Isolation for 5G mm-Wave Applications. IEEE Antennas and Wireless Propagation Letters, 18(4), 747-751.
  • Lima de Paula, I., Lemey S., Bosman, D., Brande, Q., Caytan, O., Lambrecht, J., Cauwe, M., Torfs, G. and Rogier, H. (2021). Cost-Effective High-Performance Air-Filled SIW Antenna Array for the Global 5G 26 GHz and 28 GHz Bands. IEEE Antennas and Wireless Propagation Letters, 20(2), 194-198.
  • Fakharzadeh, M., Nezhad-Ahmadi, M. R., Biglarbegian, B., AhmadiShokouh, J. and Safavi-Naeini, S. (2010). CMOS phased array transceiver technology for 60 GHz wireless applications. IEEE Trans. Antennas Propag., 58(4), 1093-1104.
  • Yang, Q., Ban, Y., Kang, K., Sim, C., and Wu, G. (2016). SIW Multibeam Array for 5G Mobile Devices. IEEE Access, 4, 2788-2796.
  • Yu, B., Yang, K., Sim, C., and Yang, G. (2018). A novel 28 GHz beam steering array for 5G mobile device with metallic casing application. IEEE Trans. Antennas Propag., 66(1), 462-466.
  • Ozpinar, H., Aksimsek, S., and Tokan, N. T. (2020). A Novel Compact, Broadband, High Gain Millimeter-Wave Antenna for 5G Beam Steering Applications. IEEE Transactions on Vehicular Technology, 69(3), 2389-2397.

5G Mobil Haberleşme İçin Milimetre Dalga Sekiz Elemanlı Faz Dizisi Anten Geliştirilmesi

Year 2021, , 323 - 326, 01.12.2021
https://doi.org/10.31590/ejosat.1018030

Abstract

Beşinci nesil (5G) mobil iletişim sistemleri, mevcut 6 GHz altı frekans bölgesinin yanı sıra spektrumun milimetre dalga (mmDalga) bantlarını da talep ediyor. Hücresel sistemlere mmDalga frekanslarının tahsisi, daha fazla kapasite ve daha hızlı bağlantılar sağlayacaktır. Son birkaç yıldır endüstri ve akademideki kablosuz iletişim toplulukları, yeni ve verimli anten mimarileri geliştirmek için önemli bir araştırma çabası içine girdiler. Yüksek mmDalga yayılma kaybı ve planlanan ağların büyük band genişliği talebi gibi 5G iletişim ortamının zorluklarının üstesinden gelebilecek yepyeni anten yapılarına ihtiyacımız olduğu açık. Bu çalışmada, 5G cep telefonu terminalleri için bir mikroşerit mmDalga anten dizisi geliştirilmiştir. İlk olarak, dikdörtgen yama yapıdaki tek anten elemanı incelenmiştir. Benzetim çalışmaları tam dalga elektromanyetik çözücü ile gerçekleştirilmiştir. Tek anten tasarımı 27.1 GHz – 28.95 GHz frekansları arasında çalışmaktadır. Mikroşerit yaklaşım ile geliştirilen önerilen anten, performanstan ödün vermeden düşük boyut profil özelliği göstermektedir. Anten, haberleşme bandında maksimum ~7.7 dBi kazanç elde etmektedir. Daha sonra, önerilen antenin 8 elemanlı faz dizisi uygulaması analiz edilmiştir. Tasarımda ~λ/2 boşluk bırakılarak düzgün aralıklı lineer dizi yöntemi kullanılmaktadır. Sekiz elemanlı dizi, maksimum toplam kazancı ~ 15 dBi’ye kadar artırmakta, düşük yan lob seviyeleri (YLS) ile ∓50°’ye kadar huzme yönlendirme sağlamaktadır. Ayrıca, önerilen faz dizi tasarımı, 10 mm×48.6 mm×0.51 mm boyutlarında, kompakt ve bu nedenle mmDalga band radyo frekansı entegre devre (RFIC) alıcı-vericileri ile uyumludur.

References

  • IMT Vision’S Framework and Overall Objectives of the Future Development of IMT for 2020 and Beyond, document Rec. ITU-R M.2083-0, ITUR. (2015). Geneva, Switzerland, Sep.
  • Further Notice of Proposed Rulemaking, FCC 16-89. (2015). Washington, DC, USA, Jul.
  • Boccardi, F., Heath, R. W., Lozano A., Marzetta, T. L. and Popovski, P. (2014). Five disruptive technology directions for 5G. IEEE Communications Magazine, 52(2), 74-80.
  • Lota, J, Sun, S., Rappaort, T. S. and Demosthenous A. (2017). 5G Uniform Linear Arrays With Beamforming and Spatial Multiplexing at 28, 37, 64, and 71 GHz for Outdoor Urban Communication: A Two-Level Approach. IEEE Transactions on Vehicular Technology, 66(11), 9972-9985.
  • Ozpinar, H. and Aksimsek, S. (2021). Design of 24-28 GHz band 5G Antenna Based on Symmetrically Located Circular Gaps. European Journal of Science and Technology, Special Issue, pp. 408-413.
  • Park, J., Ko, J., Kwon, H., Kang, B., Park B., and Kim, D. (2016). A Tilted Combined Beam Antenna for 5G Communications Using a 28-GHz Band. IEEE Antennas and Wireless Propagation Letters, 15, 1685-1688.
  • Zhang, Y., Deng, J., Li, M., Sun, D., and Guo, L. (2019). A MIMO Dielectric Resonator Antenna With Improved Isolation for 5G mm-Wave Applications. IEEE Antennas and Wireless Propagation Letters, 18(4), 747-751.
  • Lima de Paula, I., Lemey S., Bosman, D., Brande, Q., Caytan, O., Lambrecht, J., Cauwe, M., Torfs, G. and Rogier, H. (2021). Cost-Effective High-Performance Air-Filled SIW Antenna Array for the Global 5G 26 GHz and 28 GHz Bands. IEEE Antennas and Wireless Propagation Letters, 20(2), 194-198.
  • Fakharzadeh, M., Nezhad-Ahmadi, M. R., Biglarbegian, B., AhmadiShokouh, J. and Safavi-Naeini, S. (2010). CMOS phased array transceiver technology for 60 GHz wireless applications. IEEE Trans. Antennas Propag., 58(4), 1093-1104.
  • Yang, Q., Ban, Y., Kang, K., Sim, C., and Wu, G. (2016). SIW Multibeam Array for 5G Mobile Devices. IEEE Access, 4, 2788-2796.
  • Yu, B., Yang, K., Sim, C., and Yang, G. (2018). A novel 28 GHz beam steering array for 5G mobile device with metallic casing application. IEEE Trans. Antennas Propag., 66(1), 462-466.
  • Ozpinar, H., Aksimsek, S., and Tokan, N. T. (2020). A Novel Compact, Broadband, High Gain Millimeter-Wave Antenna for 5G Beam Steering Applications. IEEE Transactions on Vehicular Technology, 69(3), 2389-2397.
There are 12 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Sinan Akşimşek 0000-0002-0807-3824

Publication Date December 1, 2021
Published in Issue Year 2021

Cite

APA Akşimşek, S. (2021). Development Of A Millimeter Wave Eight-Element Phased Array Antenna for 5G Mobile Communications. Avrupa Bilim Ve Teknoloji Dergisi(29), 323-326. https://doi.org/10.31590/ejosat.1018030