Machine learning is a type of artificial intelligence that extracts patterns from raw data using an algorithm or method. The focus of machine learning is to enable computer systems to learn from experience without being explicitly programmed or human intervention. Traffic alerts, social media, transportation, product recommendations, virtual personal assistants, autonomous cars, dynamic pricing, google translation, online video streaming, fraud detection and many other uses are also frequently used in diagnosis and treatment processes in the medical field. The medical results obtained can help experts in the field to improve the life quality of the patient and to follow the status of the disease. Prostate cancer ranks second in men after lung cancer. In the literature, it has been seen that Prostate Specific Antigen, Gleason score, androgen hormone and T stage prostate cancer are important inputs, but they are not sufficient. In this study, clinical data were obtained from the cBioPortal database, which is an open platform to explore multidimensional cancer genomic data. Data preprocessing was realized for to make the obtained data more understandable and processable. The performance of K-Nearest neighbors, Random trees, Gradient boosting, Support vector machine, Logistic regression, Naive Bayes, and Decision trees classification algorithms from machine learning algorithms was evaluated by estimating the tumor/no-tumor status in the follow-ups of patients with prostate cancer. In previous studies, it has been seen that the Random trees algorithm mostly performs better. However, among the seven classifiers that are frequently used in our study with clinical data, better results were obtained with the Gradient boosting algorithm with an accuracy of 85.37%. Results can be improved by selecting the best subset with feature selection in the clinical data we obtained without feature selection.
Makine öğrenmesi, bir algoritma veya yöntem kullanarak ham verilerden kalıpları çıkaran bir yapay zeka türüdür. Makine öğrenmesinin temel odak noktası, bilgisayar sistemlerinin açıkça programlanmadan veya insan müdahalesi olmadan deneyimlerden öğrenmesine olanak sağlamaktır. Trafik uyarıları, sosyal medya, ulaşım, ürün önerileri, sanal kişisel asistanlar, otonom arabalar, dinamik ücretlendirme, google çeviri, çevrimiçi video akışı, dolandırıcılık tespiti ve daha birçok kullanım alanı olmakla beraber tıp alanında teşhis ve tedavi süreçlerinde de sıklıkla kullanılmaktadır. Elde edilen tıbbi sonuçlar hastanın yaşam kalitesini arttırmak ve hastalığın durumunu takip etmek için alanında uzman kişilere yardımcı olabilmektedir. İnsanlar için çok çeşitli hastalıklar olmakla birlikte kanser yüksek riskli hastalıkların başında gelmektedir. Prostat kanseri, akciğer kanserinden sonra erkeklerde ikinci sırada yer almaktadır. Yapılan literatür araştırmalarında Prostat Spesifik Antijen, Gleason Skor, Androjen Hormonu ve T Aşaması prostat kanser tespitinde önemli girdiler olmakla beraber yeterli olmadıkları görülmüştür. Bu çalışmada çok boyutlu kanser genomik verilerini keşfetmek için açık bir platform olan cBioPortal veritabanından klinik veriler elde edilmiştir. Elde edilen verilerin daha anlaşılır ve işlenebilir hale getirilmesi için veri ön işleme işlemi gerçekleştirilmiştir. Prostat kanseri olan hasta takiplerinde tümörlü/tümörsüz durumu tahmin edilerek makine öğrenmesi algoritmalarından K-En yakın komşular, Rassal ağaçlar, Gradyan artırma, Destek vektör makinesi, Lojistik regresyon, Naive bayes ve Karar ağaçları sınıflandırma algoritmalarının performansı değerlendirilmiştir. Yapılan önceki çalışmalarda çoğunlukla Rassal ağaçlar algoritmasının daha iyi performans gösterdiği görülmüştür. Ancak klinik verilerle yaptığımız çalışmada sıklıkla kullanılan yedi sınıflandırıcı arasında Gradyan artırma algoritması ile %85.37 doğrulukla daha iyi sonuçlar elde edilmiştir. Özellik seçimi yapılmadan elde ettiğimiz klinik verilerde özellik seçimi ile en iyi alt kümenin seçilmesi işlemi yapılarak sonuçlar iyileştirilebilir.
Primary Language | Turkish |
---|---|
Subjects | Engineering |
Journal Section | Articles |
Authors | |
Publication Date | December 1, 2021 |
Published in Issue | Year 2021 |