Research Article
BibTex RIS Cite

Elektrik Ark Ocağı Cürufunun Biyogaz Üretiminde Katkı Maddesi Olarak Kullanılması ve Etkileri

Year 2022, , 335 - 340, 31.08.2022
https://doi.org/10.31590/ejosat.1038595

Abstract

Anaerobik parçalanma prosesi organik atıkların mikroorganizmalar tarafından CH4, CO2 ve H2S gibi gazlara dönüştürüldüğü biyolojik bir prosestir. Anaerobik sistemde katkı maddeleri kullanılması, mikrobiyal toplulukların anaerobik ortamlarını iyileştirmek, mikroorganizmaların aktivitesini artırmak ve daha fazla biyogaz üretimi sağlamak için yaygın olarak kullanılan bir yaklaşımdır. Bu çalışmada elektrik ark ocağı cüruflarının (EAOC) anaerobik sistemde katkı maddesi olarak kullanılmasının biyogaz ve metan üretimi üzerindeki etkileri incelenmiştir. EAOC hurda demirden, demir çelik üretimi gerçekleştirilen bir firmadan temin edilmiş ve anaerobik sisteme belirli oranlarda (%1-5) eklenmiştir. Deneyler mezofilik şartlarda (36±1 oC), 30 günlük hidrolik bekletme sürelerinde (HBS) gerçekleştirilmiştir. 30 günlük bekletme süresi sonunda en yüksek kümülatif biyogaz üretimi 6021.90 mL ile %5 EAOC eklenen R9’da elde edilmiş ve en yüksek biyogaz verimi 219.8 mL.gVS-1 ile %4 EAOC eklenen R7’de elde edilmiştir.

References

  • Abdeshahian, P., Lim, J. S., Ho, W. S., Hashim, H., & Lee, C. T. (2016). Potential of biogas production from farm animal waste in Malaysia. Renewable and Sustainable Energy Reviews, 60, 714–723. https://doi.org/10.1016/j.rser.2016.01.117
  • Aboudi, K., Álvarez-Gallego, C. J., & Romero-García, L. I. (2016). Evaluation of methane generation and process stability from anaerobic co-digestion of sugar beet by-product and cow manure. Journal of Bioscience and Bioengineering, 121(5), 566–572. https://doi.org/10.1016/j.jbiosc.2015.10.005
  • Abudi, Z. N., Hu, Z., Sun, N., Xiao, B., Rajaa, N., Liu, C., & Guo, D. (2016). Batch anaerobic co-digestion of OFMSW (organic fraction of municipal solid waste), TWAS (thickened waste activated sludge) and RS (rice straw): Influence of TWAS and RS pretreatment and mixing ratio. Energy, 107, 131–140. https://doi.org/10.1016/j.energy.2016.03.141
  • Arif, S., Liaquat, R., & Adil, M. (2018). Applications of materials as additives in anaerobic digestion technology. Renewable and Sustainable Energy Reviews, 97(January 2017), 354–366. https://doi.org/10.1016/j.rser.2018.08.039
  • Bankole, L. K., Rezan, S. A., & Sharif, N. M. (2014). Assessment of hexavalent chromium release in Malaysian electric arc furnace steel slag for fertilizer usage. IOP Conference Series: Earth and Environmental Science, 19(1). https://doi.org/10.1088/1755-1315/19/1/012004
  • Bilhan, A., & Emikönel, S. (2021). Nevşehir İli Güneş Enerji Potansiyelinin Analizi ve Kurulu Güneş Enerji Santralleri. European Journal of Science and Technology, 24, 289–294. https://doi.org/10.31590/ejosat.900024
  • Canan, A., Calhan, R., & Ozkaymak, M. (2021). Investigation of the effects of different slags as accelerant on anaerobic digestion and methane yield. Biomass Conversion and Biorefinery; Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-021-01340-0
  • Ceylan, H. (2021). Çevresel Etki Değerlendirmesi Uygulamalarında Enerji Sektörü Analizi. European Journal of Science and Technology, 27, 237–242. https://doi.org/10.31590/ejosat.952538
  • Chen, J. L., Steele, T. W. J., & Stuckey, D. C. (2018). The effect of Fe 2 NiO 4 and Fe 4 NiO 4 Zn magnetic nanoparticles on anaerobic digestion activity. Science of the Total Environment, 642, 276–284. https://doi.org/10.1016/j.scitotenv.2018.05.373
  • Divya, D., Gopinath, L. R., & Merlin Christy, P. (2015). A review on current aspects and diverse prospects for enhancing biogas production in sustainable means. Renewable and Sustainable Energy Reviews, 42, 690–699. https://doi.org/10.1016/j.rser.2014.10.055
  • Esposito, G., Frunzo, L., Giordano, A., Liotta, F., Panico, A., & Pirozzi, F. (2012). Anaerobic co-digestion of organic wastes. Reviews in Environmental Science and Biotechnology, 11(4), 325–341. https://doi.org/10.1007/s11157-012-9277-8
  • Gadhe, A., Sonawane, S. S., & Varma, M. N. (2015). ScienceDirect Influence of nickel and hematite nanoparticle powder on the production of biohydrogen from complex distillery wastewater in batch fermentation. International Journal of Hydrogen Energy, 40(34), 10734–10743. https://doi.org/10.1016/j.ijhydene.2015.05.198
  • Han, F., Yun, S., Zhang, C., Xu, H., & Wang, Z. (2019). Bioresource Technology Steel slag as accelerant in anaerobic digestion for nonhazardous treatment and digestate fertilizer utilization. Bioresource Technology, 282(January), 331–338. https://doi.org/10.1016/j.biortech.2019.03.029
  • Jung, H., Kim, J., & Lee, C. (2016). Continuous anaerobic co-digestion of Ulva biomass and cheese whey at varying substrate mixing ratios: Different responses in two reactors with different operating regimes. Bioresource Technology, 221, 366–374. https://doi.org/10.1016/j.biortech.2016.09.059
  • Kaparaju, P., Ellegaard, L., & Angelidaki, I. (2009). Optimisation of biogas production from manure through serial digestion: Lab-scale and pilot-scale studies. Bioresource Technology, 100(2), 701–709. https://doi.org/10.1016/j.biortech.2008.07.023
  • Kaskun, S., Çalhan, R., & Akinay, Y. (2021). Enhancement of biogas production using SnO2 nanoparticle-doped mica catalyst. Biomass Conversion and Biorefinery, 0123456789. https://doi.org/10.1007/s13399-021-01983-z
  • Kato, S., Hashimoto, K., & Watanabe, K. (2012). Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals. Environmental Microbiology, 14(7), 1646–1654. https://doi.org/10.1111/j.1462-2920.2011.02611.x
  • Lee, J. Y., Lee, S. H., & Park, H. D. (2016). Enrichment of specific electro-active microorganisms and enhancement of methane production by adding granular activated carbon in anaerobic reactors. Bioresource Technology, 205, 205–212. https://doi.org/10.1016/j.biortech.2016.01.054
  • Lisboa, M. S., & Lansing, S. (2013). Characterizing food waste substrates for co-digestion through biochemical methane potential (BMP) experiments. Waste Management, 33(12), 2664–2669. https://doi.org/10.1016/j.wasman.2013.09.004
  • Mata-Alvarez, J., Dosta, J., Romero-G??iza, M. S., Fonoll, X., Peces, M., & Astals, S. (2014). A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renewable and Sustainable Energy Reviews, 36, 412–427. https://doi.org/10.1016/j.rser.2014.04.039
  • Mata-Alvarez, J., Dosta, J., Romero-Güiza, M. S., Fonoll, X., Peces, M., & Astals, S. (2014). A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renewable and Sustainable Energy Reviews, 36, 412–427. https://doi.org/10.1016/j.rser.2014.04.039
  • Monosi, S., Ruello, M. L., & Sani, D. (2016). Electric arc furnace slag as natural aggregate replacement in concrete production. Cement and Concrete Composites, 66, 66–72. https://doi.org/10.1016/j.cemconcomp.2015.10.004
  • Nandi, R., Saha, C. K., Huda, M. S., & Alam, M. M. (2017). Effect of mixing on biogas production from cow dung. Eco-Friendly Agril, 10(2), 7–13. www.efaj-international.com
  • Nevzorova, T., & Kutcherov, V. (2019). Barriers to the wider implementation of biogas as a source of energy: A state-of-the-art review. Energy Strategy Reviews, 26, 100414. https://doi.org/10.1016/j.esr.2019.100414
  • Nges, I. A., & Björnsson, L. (2012). High methane yields and stable operation during anaerobic digestion of nutrient-supplemented energy crop mixtures. Biomass and Bioenergy, 47, 62–70. https://doi.org/10.1016/j.biombioe.2012.10.002
  • Nikolić, I., Drinčić, A., Djurović, D., Karanović, L., Radmilović, V. V., & Radmilović, V. R. (2016). Kinetics of electric arc furnace slag leaching in alkaline solutions. Construction and Building Materials, 108, 1–9. https://doi.org/10.1016/j.conbuildmat.2016.01.038
  • Noorollahi, Y., Kheirrouz, M., Farabi-Asl, H., Yousefi, H., & Hajinezhad, A. (2015). Biogas production potential from livestock manure in Iran. Renewable and Sustainable Energy Reviews, 50, 748–754. https://doi.org/10.1016/j.rser.2015.04.190
  • Santamaria, A., Faleschini, F., Giacomello, G., Brunelli, K., San José, J. T., Pellegrino, C., & Pasetto, M. (2018). Dimensional stability of electric arc furnace slag in civil engineering applications. Journal of Cleaner Production, 205, 599–609. https://doi.org/10.1016/j.jclepro.2018.09.122
  • Suanon, F., Sun, Q., Li, M., Cai, X., Zhang, Y., Yan, Y., & Yu, C. P. (2017). Application of nanoscale zero valent iron and iron powder during sludge anaerobic digestion: Impact on methane yield and pharmaceutical and personal care products degradation. Journal of Hazardous Materials, 321, 47–53. https://doi.org/10.1016/j.jhazmat.2016.08.076
  • Tashiro, Y., Matsumoto, H., Miyamoto, H., Okugawa, Y., Pramod, P., Miyamoto, H., & Sakai, K. (2013). A novel production process for optically pure l-lactic acid from kitchen refuse using a bacterial consortium at high temperatures. Bioresource Technology, 146, 672–681. https://doi.org/10.1016/j.biortech.2013.07.102
  • World Steel Association. (2019). Steel Statistical Yearbook 2019 Concise version. World Steel Association, 1–6. https://www.worldsteel.org/zh/dam/jcr:7aa2a95d-448d-4c56-b62b-b2457f067cd9/SSY19%2520concise%2520version.pdf
  • Xu, H., Chang, J., Wang, H., Liu, Y., Zhang, X., Liang, P., & Huang, X. (2019). Enhancing direct interspecies electron transfer in syntrophic-methanogenic associations with (semi)conductive iron oxides: Effects and mechanisms. Science of the Total Environment, 695, 133876. https://doi.org/10.1016/j.scitotenv.2019.133876
  • Zenk, H. (2019). The Electric Energy Potential of Samsun City from Animal Manure. European Journal of Science and Technology, 17, 1307–1312. https://doi.org/10.31590/ejosat.661910
  • Zhang, B., Zhang;, L.-L., Zhang;, S.-C., Shi;, H.-Z., & Cai;, W.-M. (2005). The influence of pH on hydrolysis and acidogenesis kitchen wastes. Environmental Technology, 26(3), 329–340.

Use of Electric Arc Furnace Slag as an Additive in Biogas Production and Its Effects

Year 2022, , 335 - 340, 31.08.2022
https://doi.org/10.31590/ejosat.1038595

Abstract

Anaerobic digestion (AD) is a biological process in which organic wastes are converted into gases such as CH4, CO2, and H2S by microorganisms. In AD, using additives is a widespread approach to improve the anaerobic environment of microbial communities, increase microorganisms' activity, and provide more biogas production. This study investigates the effects of adding the electric arc furnace slag (EAFS) as an additive to the AD system on biogas and methane production. EAFS was obtained from a company that produces iron and steel from scrap iron and added to the AD system at specific concentrations (1-5%). Experiments were carried out in mesophilic conditions (36±1 oC) during a 30-day hydraulic retention time (HRT). As a result of batch experiments, at the end of the 30-day HRT, the highest cumulative biogas production was obtained in R9 with 6021.90 mL and 5% EAFS added, and the highest biogas efficiency was obtained in R7 with 219.8 mL.gVS-1 and 4% EAFS added. Furthermore, it was determined that the addition of EAFS to the AD system increased methane yield.

References

  • Abdeshahian, P., Lim, J. S., Ho, W. S., Hashim, H., & Lee, C. T. (2016). Potential of biogas production from farm animal waste in Malaysia. Renewable and Sustainable Energy Reviews, 60, 714–723. https://doi.org/10.1016/j.rser.2016.01.117
  • Aboudi, K., Álvarez-Gallego, C. J., & Romero-García, L. I. (2016). Evaluation of methane generation and process stability from anaerobic co-digestion of sugar beet by-product and cow manure. Journal of Bioscience and Bioengineering, 121(5), 566–572. https://doi.org/10.1016/j.jbiosc.2015.10.005
  • Abudi, Z. N., Hu, Z., Sun, N., Xiao, B., Rajaa, N., Liu, C., & Guo, D. (2016). Batch anaerobic co-digestion of OFMSW (organic fraction of municipal solid waste), TWAS (thickened waste activated sludge) and RS (rice straw): Influence of TWAS and RS pretreatment and mixing ratio. Energy, 107, 131–140. https://doi.org/10.1016/j.energy.2016.03.141
  • Arif, S., Liaquat, R., & Adil, M. (2018). Applications of materials as additives in anaerobic digestion technology. Renewable and Sustainable Energy Reviews, 97(January 2017), 354–366. https://doi.org/10.1016/j.rser.2018.08.039
  • Bankole, L. K., Rezan, S. A., & Sharif, N. M. (2014). Assessment of hexavalent chromium release in Malaysian electric arc furnace steel slag for fertilizer usage. IOP Conference Series: Earth and Environmental Science, 19(1). https://doi.org/10.1088/1755-1315/19/1/012004
  • Bilhan, A., & Emikönel, S. (2021). Nevşehir İli Güneş Enerji Potansiyelinin Analizi ve Kurulu Güneş Enerji Santralleri. European Journal of Science and Technology, 24, 289–294. https://doi.org/10.31590/ejosat.900024
  • Canan, A., Calhan, R., & Ozkaymak, M. (2021). Investigation of the effects of different slags as accelerant on anaerobic digestion and methane yield. Biomass Conversion and Biorefinery; Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-021-01340-0
  • Ceylan, H. (2021). Çevresel Etki Değerlendirmesi Uygulamalarında Enerji Sektörü Analizi. European Journal of Science and Technology, 27, 237–242. https://doi.org/10.31590/ejosat.952538
  • Chen, J. L., Steele, T. W. J., & Stuckey, D. C. (2018). The effect of Fe 2 NiO 4 and Fe 4 NiO 4 Zn magnetic nanoparticles on anaerobic digestion activity. Science of the Total Environment, 642, 276–284. https://doi.org/10.1016/j.scitotenv.2018.05.373
  • Divya, D., Gopinath, L. R., & Merlin Christy, P. (2015). A review on current aspects and diverse prospects for enhancing biogas production in sustainable means. Renewable and Sustainable Energy Reviews, 42, 690–699. https://doi.org/10.1016/j.rser.2014.10.055
  • Esposito, G., Frunzo, L., Giordano, A., Liotta, F., Panico, A., & Pirozzi, F. (2012). Anaerobic co-digestion of organic wastes. Reviews in Environmental Science and Biotechnology, 11(4), 325–341. https://doi.org/10.1007/s11157-012-9277-8
  • Gadhe, A., Sonawane, S. S., & Varma, M. N. (2015). ScienceDirect Influence of nickel and hematite nanoparticle powder on the production of biohydrogen from complex distillery wastewater in batch fermentation. International Journal of Hydrogen Energy, 40(34), 10734–10743. https://doi.org/10.1016/j.ijhydene.2015.05.198
  • Han, F., Yun, S., Zhang, C., Xu, H., & Wang, Z. (2019). Bioresource Technology Steel slag as accelerant in anaerobic digestion for nonhazardous treatment and digestate fertilizer utilization. Bioresource Technology, 282(January), 331–338. https://doi.org/10.1016/j.biortech.2019.03.029
  • Jung, H., Kim, J., & Lee, C. (2016). Continuous anaerobic co-digestion of Ulva biomass and cheese whey at varying substrate mixing ratios: Different responses in two reactors with different operating regimes. Bioresource Technology, 221, 366–374. https://doi.org/10.1016/j.biortech.2016.09.059
  • Kaparaju, P., Ellegaard, L., & Angelidaki, I. (2009). Optimisation of biogas production from manure through serial digestion: Lab-scale and pilot-scale studies. Bioresource Technology, 100(2), 701–709. https://doi.org/10.1016/j.biortech.2008.07.023
  • Kaskun, S., Çalhan, R., & Akinay, Y. (2021). Enhancement of biogas production using SnO2 nanoparticle-doped mica catalyst. Biomass Conversion and Biorefinery, 0123456789. https://doi.org/10.1007/s13399-021-01983-z
  • Kato, S., Hashimoto, K., & Watanabe, K. (2012). Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals. Environmental Microbiology, 14(7), 1646–1654. https://doi.org/10.1111/j.1462-2920.2011.02611.x
  • Lee, J. Y., Lee, S. H., & Park, H. D. (2016). Enrichment of specific electro-active microorganisms and enhancement of methane production by adding granular activated carbon in anaerobic reactors. Bioresource Technology, 205, 205–212. https://doi.org/10.1016/j.biortech.2016.01.054
  • Lisboa, M. S., & Lansing, S. (2013). Characterizing food waste substrates for co-digestion through biochemical methane potential (BMP) experiments. Waste Management, 33(12), 2664–2669. https://doi.org/10.1016/j.wasman.2013.09.004
  • Mata-Alvarez, J., Dosta, J., Romero-G??iza, M. S., Fonoll, X., Peces, M., & Astals, S. (2014). A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renewable and Sustainable Energy Reviews, 36, 412–427. https://doi.org/10.1016/j.rser.2014.04.039
  • Mata-Alvarez, J., Dosta, J., Romero-Güiza, M. S., Fonoll, X., Peces, M., & Astals, S. (2014). A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renewable and Sustainable Energy Reviews, 36, 412–427. https://doi.org/10.1016/j.rser.2014.04.039
  • Monosi, S., Ruello, M. L., & Sani, D. (2016). Electric arc furnace slag as natural aggregate replacement in concrete production. Cement and Concrete Composites, 66, 66–72. https://doi.org/10.1016/j.cemconcomp.2015.10.004
  • Nandi, R., Saha, C. K., Huda, M. S., & Alam, M. M. (2017). Effect of mixing on biogas production from cow dung. Eco-Friendly Agril, 10(2), 7–13. www.efaj-international.com
  • Nevzorova, T., & Kutcherov, V. (2019). Barriers to the wider implementation of biogas as a source of energy: A state-of-the-art review. Energy Strategy Reviews, 26, 100414. https://doi.org/10.1016/j.esr.2019.100414
  • Nges, I. A., & Björnsson, L. (2012). High methane yields and stable operation during anaerobic digestion of nutrient-supplemented energy crop mixtures. Biomass and Bioenergy, 47, 62–70. https://doi.org/10.1016/j.biombioe.2012.10.002
  • Nikolić, I., Drinčić, A., Djurović, D., Karanović, L., Radmilović, V. V., & Radmilović, V. R. (2016). Kinetics of electric arc furnace slag leaching in alkaline solutions. Construction and Building Materials, 108, 1–9. https://doi.org/10.1016/j.conbuildmat.2016.01.038
  • Noorollahi, Y., Kheirrouz, M., Farabi-Asl, H., Yousefi, H., & Hajinezhad, A. (2015). Biogas production potential from livestock manure in Iran. Renewable and Sustainable Energy Reviews, 50, 748–754. https://doi.org/10.1016/j.rser.2015.04.190
  • Santamaria, A., Faleschini, F., Giacomello, G., Brunelli, K., San José, J. T., Pellegrino, C., & Pasetto, M. (2018). Dimensional stability of electric arc furnace slag in civil engineering applications. Journal of Cleaner Production, 205, 599–609. https://doi.org/10.1016/j.jclepro.2018.09.122
  • Suanon, F., Sun, Q., Li, M., Cai, X., Zhang, Y., Yan, Y., & Yu, C. P. (2017). Application of nanoscale zero valent iron and iron powder during sludge anaerobic digestion: Impact on methane yield and pharmaceutical and personal care products degradation. Journal of Hazardous Materials, 321, 47–53. https://doi.org/10.1016/j.jhazmat.2016.08.076
  • Tashiro, Y., Matsumoto, H., Miyamoto, H., Okugawa, Y., Pramod, P., Miyamoto, H., & Sakai, K. (2013). A novel production process for optically pure l-lactic acid from kitchen refuse using a bacterial consortium at high temperatures. Bioresource Technology, 146, 672–681. https://doi.org/10.1016/j.biortech.2013.07.102
  • World Steel Association. (2019). Steel Statistical Yearbook 2019 Concise version. World Steel Association, 1–6. https://www.worldsteel.org/zh/dam/jcr:7aa2a95d-448d-4c56-b62b-b2457f067cd9/SSY19%2520concise%2520version.pdf
  • Xu, H., Chang, J., Wang, H., Liu, Y., Zhang, X., Liang, P., & Huang, X. (2019). Enhancing direct interspecies electron transfer in syntrophic-methanogenic associations with (semi)conductive iron oxides: Effects and mechanisms. Science of the Total Environment, 695, 133876. https://doi.org/10.1016/j.scitotenv.2019.133876
  • Zenk, H. (2019). The Electric Energy Potential of Samsun City from Animal Manure. European Journal of Science and Technology, 17, 1307–1312. https://doi.org/10.31590/ejosat.661910
  • Zhang, B., Zhang;, L.-L., Zhang;, S.-C., Shi;, H.-Z., & Cai;, W.-M. (2005). The influence of pH on hydrolysis and acidogenesis kitchen wastes. Environmental Technology, 26(3), 329–340.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Rahman Çalhan 0000-0002-3894-8468

Publication Date August 31, 2022
Published in Issue Year 2022

Cite

APA Çalhan, R. (2022). Elektrik Ark Ocağı Cürufunun Biyogaz Üretiminde Katkı Maddesi Olarak Kullanılması ve Etkileri. Avrupa Bilim Ve Teknoloji Dergisi(38), 335-340. https://doi.org/10.31590/ejosat.1038595