Research Article
BibTex RIS Cite

Design and Morphology Characterization of Biopolymer Blend-ZnO Nanocomposites Coated Cu-Ni-Mo-based Steel Foam

Year 2021, , 339 - 345, 31.12.2021
https://doi.org/10.31590/ejosat.1039292

Abstract

Recent developments have been focused on the fabrication and application of metal–metal oxide nanocomposites coated steel foam for nanomaterials, which can have excellent surface morphology and mechanical properties than conventional materials. In this study, a novel 3 dimensional (3D) biopolymer blend-ZnO nanocomposites coated Cu-Ni-Mo-based steel foam was designed and prepared. The objective of this work was to investigate the deposition of the nanofilm by immersion of the steel foam into a solution containing ZnO nanostructures and to determine the effect of the surface coating of biopolymer blend-ZnO nanocomposites onto the Cu-Ni-Mo-based steel foam. A low-cost and easy-to-use dip-coating method was preferred to obtain uniform and high quality coating layers. With this approach, the nanocoatings were prepared at 25 °C and low contact time (≈10 min). X-ray diffraction (XRD), scanning electron microscopy (SEM), and stereo microscope analysis methods were used to demonstrate surface and chemical properties of the tragacanth gum / chitosan blend encapsulated ZnO nanocomposites (TG/CH/ZnO NPs) coated Cu-Ni-Mo based steel foam. According to the SEM and stereo microscope images, the prepared 3D random shape with irregular ZnO NPs on the surface of the Cu-Ni-Mo based steel foam were formed. Furthermore, the mean surface roughness values of uncoated steel foam and TG/CH/ZnO NPs coated steel foam were measured as 4.48 µm and 4.61 µm, respectively. Additionally, the RGB pixel of the SEM micrograph of the coated steel foam was analyzed to investigate the effect of coating materials on the surface. Due to cost-efficient and green fabrication of the nanocoating, it has a significant potential to be a promising nanomaterial in biomedical applications.

Supporting Institution

İstanbul Üniversitesi-Cerrahpaşa

Project Number

BYP-2021-35529

Thanks

This work was supported by Scientific Research Projects Coordination Unit of Istanbul University-Cerrahpaşa. Project number: BYP-2021-35529 I would like to acknowledge Assoc. Prof. Dr. Selcan Karakuş and Res. Asst. Gizem Karabulut for their enthusiastic help.

References

  • Banhart, J. (2001). Manufacture, characterisation and application of cellular metals and metal foams. Progress in materials science, 46(6), 559-632.
  • Bekoz, N., & Oktay, E. (2013). Effect of heat treatment on mechanical properties of low alloy steel foams. Materials & Design, 51, 212-218.
  • Bekoz, N., & Oktay, E. (2014). The role of pore wall microstructure and micropores on the mechanical properties of Cu–Ni–Mo based steel foams. Materials Science and Engineering: A, 612, 387-397.
  • Beköz Üllen, N., & Karabulut, G. (2022). Production Techniques of Metallic Foams in Lightweight Materials. In Handbook of Research on Advancements in the Processing, Characterization, and Application of Lightweight Materials (pp. 153-175). IGI Global.
  • Guo, K., Li, M., Gong, Q., Li, C., Li, C., Zhong, H., & Zhou, Y. (2016). Experimental investigation on steel foams fabricated by sintering-dissolution process. Materials and Manufacturing Processes, 31(12), 1597-1602.
  • Jain, H., Mondal, D. P., Gupta, G., Kumar, R., & Singh, S. (2020). Synthesis and characterization of 316L stainless steel foam made through two different removal process of space holder method. Manufacturing Letters, 26, 33-36.
  • Javed, R., Rais, F., Fatima, H., ul Haq, I., Kaleem, M., Naz, S. S., & Ao, Q. (2020). Chitosan encapsulated ZnO nanocomposites: Fabrication, characterization, and functionalization of bio-dental approaches. Materials Science and Engineering: C, 116, 111184.
  • Joshi, S., Gupta, G. K., Sharma, M., Telang, A., & Mahra, T. (2015). Synthesis and Characterization of Stainless Steel Foam Via Powder Metallurgy Taking Acicular Urea As Space Holder. Material Science Research India, 12(1), 43-49.
  • Kolatoğlu, R., Aydin, E., Demir, M., Yildiz, A., Karakuş, S., Tüzün, E., ... & Kilislioğlu, A. (2020). A Novel Electrochemical Sensor for the Detection of Reactive Red Dye to Determine Water Quality. In Advanced Functional Materials. IntechOpen.
  • Najm, S. S. (2021). Doping effect on the optical properties of (PVA: ZNO) nanocomposites. Materials Today: Proceedings. Priya, A., Arumugam, M., Arunachalam, P., Al-Mayouf, A. M., Madhavan, J., Theerthagiri, J., & Choi, M. Y. (2020).
  • Fabrication of visible-light active BiFeWO6/ZnO nanocomposites with enhanced photocatalytic activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 586, 124294.
  • Rajkumar, P., & Sarma, B. K. (2021). Role of Zn and Mg substitutions on the mechanical behaviour of biomimetic hydroxyapatite and insight of the emergence of hydroxyapatite-ZnO nanocomposite. Materials Characterization, 176, 111107.
  • Rodríguez, R., Correcher, V., Gómez-Ros, J. M., Plaza, J. L., & García-Guinea, J. (2021). Cathodoluminescence, SEM and EDX analysis of CaF2 and Tm2O3 pellets for radiation dosimetry applications. Radiation Physics and Chemistry, 188, 109621.
  • Sazegaran, H. (2021). Investigation on Production Parameters of Steel Foam Manufactured Through Powder Metallurgical Space Holder Technique. Metals and Materials International, 27(9), 3371-3384.
  • Karakuş, S., Albayrak, İ., Üllen, N. B., Insel, M. A., Kilislioğlu, A. (2021). Preparation, characterization and evaluation of a novel CMC/Chitosan-α-Fe 2 O 3 nanoparticles-coated 17–4 PH stainless-steel foam. Polymer Bulletin, 1-19.
  • Karakuş, S., Albayrak, İ., Beköz Üllen, N., İnsel, M., Kilislioğlu, A. (2020b). Mathematical Modelling of Surface Behaviors of ZnO Nanoparticles Coated 17-4 PH Stainless Steel Foam, 3rd International Conference on Physical Chemistry and Functional Materials (PCFM 2020), Malatya, Turkey, 22 - 24 September 2020, 33-39.
  • Karakuş, S., Beköz Üllen, N., Albayrak, F., İnsel, M.A., Kilislioğlu, A. (2020a). Optimization of Surface Properties of Κ-Carrageenan/PVA/Eggshell Nanobiocomposites Coated 17-4 PH Stainless Steel Foam, 3rd International Conference on Physical Chemistry and Functional Materials (PCFM 2020), Malatya, Turkey, 22 - 24 September 2020, 25-32.
  • Singh, D., Kundu, V. S., & Maan, A. S. (2016). Structural, morphological and gas sensing study of zinc doped tin oxide nanoparticles synthesized via hydrothermal technique. Journal of Molecular Structure, 1115, 250-257.
  • Shirzadi, A. A., Kocak, M., & Wallach, E. R. (2004). Joining stainless steel metal foams. Science and technology of welding and joining, 9(3), 277-279.
  • Smith, B. H., Szyniszewski, S., Hajjar, J. F., Schafer, B. W., & Arwade, S. R. (2012). Steel foam for structures: A review of applications, manufacturing and material properties. Journal of Constructional Steel Research, 71, 1-10.
  • Tariq, M., Khan, A. U., Rehman, A. U., Ullah, S., Jan, A. U., Khan, Z. U. H., ... & Yuan, Q. (2021). Green synthesis of Zno@ GO nanocomposite and its’ efficient antibacterial activity. Photodiagnosis and photodynamic therapy, 35, 102471.
  • Yang, C., Xie, D., & Wang, S. (2021). Facile synthesis of palygorskite/polyaniline/ZnO nanocomposites as strong wideband microwave absorbers. Materials Letters, 131161.
  • Yu, C. J., Eifert, H. H., Knuewer, M., Weber, M., & Baumeister, J. (1998). Investigation for the selection of foaming agents to produce steel foams. MRS Online Proceedings Library (OPL), 521.
  • Welegergs, G. G., Akoba, R., Sacky, J., & Nuru, Z. Y. (2021). Structural and optical properties of copper oxide (CuO) nanocoatings as selective solar absorber. Materials Today: Proceedings, 36, 509-513.
  • Wagener, P., Faramarzi, S., Schwenke, A., Rosenfeld, R., & Barcikowski, S. (2011). Photoluminescent zinc oxide polymer nanocomposites fabricated using picosecond laser ablation in an organic solvent. Applied surface science, 257(16), 7231-7237.

Biyopolimer karışım-ZnO Nanokompozit Kaplamalı Cu-Ni-Mo-bazlı Çelik Köpüğün Tasarımı ve Morfoloji Karakterizasyonu

Year 2021, , 339 - 345, 31.12.2021
https://doi.org/10.31590/ejosat.1039292

Abstract

Son gelişmeler, nanomalzemeler için geleneksel malzemelere göre mükemmel yüzey morfolojisi ve mekanik özelliklere sahip olabilen metal-metal oksit nanokompozitler kaplı çelik köpüğün üretimi ve uygulamasına odaklanmıştır. Bu çalışmada, Cu-Ni-Mo esaslı yeni bir 3 boyutlu (3B) biyopolimer karışımı-ZnO nanokompozitleri kaplanmış çelik köpük tasarlandı ve hazırlandı. Bu çalışmanın amacı, çelik köpüğün ZnO nanoyapıları içeren bir çözeltiye daldırılmasıyla nanofilmin birikmesini araştırmak ve biyopolimer karışımı-ZnO nanokompozitlerinin yüzey kaplamasının Cu-Ni-Mo bazlı çelik köpük üzerindeki etkisini belirlemekti. Düzgün ve kaliteli kaplama tabakaları elde etmek için düşük maliyetli ve kullanımı kolay bir daldırma kaplama yöntemini tercih edilmiştir. Bu yaklaşımla, nanokaplamalar 25 °C'de ve düşük temas süresinde (≈10 dk) hazırlanmıştır. X-ışını kırınımı (XRD), taramalı elektron mikroskobu (SEM) ve stereo mikroskop, kitre sakızı / kitosan karışımı ile kapsüllenmiş ZnO nanokompozitlerinin (TG/CH/ZnO NP'ler) kaplanmış Cu-Ni-Mo bazlı çelik köpüğün yüzey ve kimyasal özelliklerini göstermek için kullanıldı. SEM ve stereo mikroskop görüntülerine göre, Cu-Ni-Mo esaslı çelik köpüğün yüzeyinde düzensiz ZnO NP'leri ile hazırlanan 3 boyutlu rastgele yapı oluşturulmuştur. Ayrıca kaplanmamış çelik köpüğün ve TG/CH/ZnO NPs kaplı çelik köpüğün ortalama yüzey pürüzlülük değerleri sırasıyla 4.48 µm ve 4.61 µm olarak ölçülmüştür. Ayrıca, kaplama malzemelerinin yüzey üzerindeki etkisini araştırmak için kaplanmış çelik köpüğün SEM mikrografının RGB pikselleri analiz edilmiştir. Nanokaplamanın düşük maliyetli ve çevre dostu üretimi nedeniyle, biyomedikal uygulamalarda umut verici bir nanomalzeme olma potansiyeline sahiptir.

Project Number

BYP-2021-35529

References

  • Banhart, J. (2001). Manufacture, characterisation and application of cellular metals and metal foams. Progress in materials science, 46(6), 559-632.
  • Bekoz, N., & Oktay, E. (2013). Effect of heat treatment on mechanical properties of low alloy steel foams. Materials & Design, 51, 212-218.
  • Bekoz, N., & Oktay, E. (2014). The role of pore wall microstructure and micropores on the mechanical properties of Cu–Ni–Mo based steel foams. Materials Science and Engineering: A, 612, 387-397.
  • Beköz Üllen, N., & Karabulut, G. (2022). Production Techniques of Metallic Foams in Lightweight Materials. In Handbook of Research on Advancements in the Processing, Characterization, and Application of Lightweight Materials (pp. 153-175). IGI Global.
  • Guo, K., Li, M., Gong, Q., Li, C., Li, C., Zhong, H., & Zhou, Y. (2016). Experimental investigation on steel foams fabricated by sintering-dissolution process. Materials and Manufacturing Processes, 31(12), 1597-1602.
  • Jain, H., Mondal, D. P., Gupta, G., Kumar, R., & Singh, S. (2020). Synthesis and characterization of 316L stainless steel foam made through two different removal process of space holder method. Manufacturing Letters, 26, 33-36.
  • Javed, R., Rais, F., Fatima, H., ul Haq, I., Kaleem, M., Naz, S. S., & Ao, Q. (2020). Chitosan encapsulated ZnO nanocomposites: Fabrication, characterization, and functionalization of bio-dental approaches. Materials Science and Engineering: C, 116, 111184.
  • Joshi, S., Gupta, G. K., Sharma, M., Telang, A., & Mahra, T. (2015). Synthesis and Characterization of Stainless Steel Foam Via Powder Metallurgy Taking Acicular Urea As Space Holder. Material Science Research India, 12(1), 43-49.
  • Kolatoğlu, R., Aydin, E., Demir, M., Yildiz, A., Karakuş, S., Tüzün, E., ... & Kilislioğlu, A. (2020). A Novel Electrochemical Sensor for the Detection of Reactive Red Dye to Determine Water Quality. In Advanced Functional Materials. IntechOpen.
  • Najm, S. S. (2021). Doping effect on the optical properties of (PVA: ZNO) nanocomposites. Materials Today: Proceedings. Priya, A., Arumugam, M., Arunachalam, P., Al-Mayouf, A. M., Madhavan, J., Theerthagiri, J., & Choi, M. Y. (2020).
  • Fabrication of visible-light active BiFeWO6/ZnO nanocomposites with enhanced photocatalytic activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 586, 124294.
  • Rajkumar, P., & Sarma, B. K. (2021). Role of Zn and Mg substitutions on the mechanical behaviour of biomimetic hydroxyapatite and insight of the emergence of hydroxyapatite-ZnO nanocomposite. Materials Characterization, 176, 111107.
  • Rodríguez, R., Correcher, V., Gómez-Ros, J. M., Plaza, J. L., & García-Guinea, J. (2021). Cathodoluminescence, SEM and EDX analysis of CaF2 and Tm2O3 pellets for radiation dosimetry applications. Radiation Physics and Chemistry, 188, 109621.
  • Sazegaran, H. (2021). Investigation on Production Parameters of Steel Foam Manufactured Through Powder Metallurgical Space Holder Technique. Metals and Materials International, 27(9), 3371-3384.
  • Karakuş, S., Albayrak, İ., Üllen, N. B., Insel, M. A., Kilislioğlu, A. (2021). Preparation, characterization and evaluation of a novel CMC/Chitosan-α-Fe 2 O 3 nanoparticles-coated 17–4 PH stainless-steel foam. Polymer Bulletin, 1-19.
  • Karakuş, S., Albayrak, İ., Beköz Üllen, N., İnsel, M., Kilislioğlu, A. (2020b). Mathematical Modelling of Surface Behaviors of ZnO Nanoparticles Coated 17-4 PH Stainless Steel Foam, 3rd International Conference on Physical Chemistry and Functional Materials (PCFM 2020), Malatya, Turkey, 22 - 24 September 2020, 33-39.
  • Karakuş, S., Beköz Üllen, N., Albayrak, F., İnsel, M.A., Kilislioğlu, A. (2020a). Optimization of Surface Properties of Κ-Carrageenan/PVA/Eggshell Nanobiocomposites Coated 17-4 PH Stainless Steel Foam, 3rd International Conference on Physical Chemistry and Functional Materials (PCFM 2020), Malatya, Turkey, 22 - 24 September 2020, 25-32.
  • Singh, D., Kundu, V. S., & Maan, A. S. (2016). Structural, morphological and gas sensing study of zinc doped tin oxide nanoparticles synthesized via hydrothermal technique. Journal of Molecular Structure, 1115, 250-257.
  • Shirzadi, A. A., Kocak, M., & Wallach, E. R. (2004). Joining stainless steel metal foams. Science and technology of welding and joining, 9(3), 277-279.
  • Smith, B. H., Szyniszewski, S., Hajjar, J. F., Schafer, B. W., & Arwade, S. R. (2012). Steel foam for structures: A review of applications, manufacturing and material properties. Journal of Constructional Steel Research, 71, 1-10.
  • Tariq, M., Khan, A. U., Rehman, A. U., Ullah, S., Jan, A. U., Khan, Z. U. H., ... & Yuan, Q. (2021). Green synthesis of Zno@ GO nanocomposite and its’ efficient antibacterial activity. Photodiagnosis and photodynamic therapy, 35, 102471.
  • Yang, C., Xie, D., & Wang, S. (2021). Facile synthesis of palygorskite/polyaniline/ZnO nanocomposites as strong wideband microwave absorbers. Materials Letters, 131161.
  • Yu, C. J., Eifert, H. H., Knuewer, M., Weber, M., & Baumeister, J. (1998). Investigation for the selection of foaming agents to produce steel foams. MRS Online Proceedings Library (OPL), 521.
  • Welegergs, G. G., Akoba, R., Sacky, J., & Nuru, Z. Y. (2021). Structural and optical properties of copper oxide (CuO) nanocoatings as selective solar absorber. Materials Today: Proceedings, 36, 509-513.
  • Wagener, P., Faramarzi, S., Schwenke, A., Rosenfeld, R., & Barcikowski, S. (2011). Photoluminescent zinc oxide polymer nanocomposites fabricated using picosecond laser ablation in an organic solvent. Applied surface science, 257(16), 7231-7237.
There are 25 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Nuray Beköz Üllen 0000-0003-2705-2559

Project Number BYP-2021-35529
Publication Date December 31, 2021
Published in Issue Year 2021

Cite

APA Beköz Üllen, N. (2021). Design and Morphology Characterization of Biopolymer Blend-ZnO Nanocomposites Coated Cu-Ni-Mo-based Steel Foam. Avrupa Bilim Ve Teknoloji Dergisi(32), 339-345. https://doi.org/10.31590/ejosat.1039292