Research Article
BibTex RIS Cite

Karataş Ölçüm İstasyonu 1970-2019 Periyodu Yağış Verilerinin Konsantrasyon, Erozivite ve Mevsimsellik Değerlendirilmesi

Year 2021, , 118 - 125, 31.12.2021
https://doi.org/10.31590/ejosat.1040131

Abstract

İklim değişikliği etkilerinin bir sonucu olarak yağışlarda meydana gelecek zamansal ve mekansal değişkenlikler genellikle taşkın, kuraklık, toprak erozyonu vb olaylarının oluşmasına neden olmaktadır. Bu nedenle bir alan ya da bölgedeki yağış değişkenliklerinin belirlenmesi toprak ve su kaynaklarının korunması, toprak erozyonu ile mücadelede oldukça önemlidir. Bu çalışma Seyhan Havzasında bulunan Karataş meteoroloji istasyonuna ait 1970-2019 periyodundaki yağış verilerinin aylık ve yıllık değişimini, yıllık ve mevsimlik yağış konsantrasyonunu (APCI ve SPCI), yıllık ve mevsimlik yağış erozivitesini (AMFI) ve SMFI) ve yağışın mevsimselliğini (SI) incelemeyi amaçlamaktadır. Ayrıca bu parametrelerin incelenen periyottaki değişimi Mann-Kendall (MK) trend testi kullanılarak incelenmiştir. Karataş istasyonu için hesaplanan APCI değerlerinde genellikle düzensiz ve güçlü düzensiz yağış dağılımı elde edilmiştir. SPCI analizlerine göre ise genellikle SPCIKış değerleri üniform ve orta düzey, SPCIİlkbahar değerleri orta düzey, SPCIYaz değerleri güçlü düzensiz, SPCISonbahar değerleri ise orta düzey yağış dağılımına sahiptir. Yağış erozivitesini incelemek için hesaplanan AMFI değerlerine göre ise yağışların genellikle yüksek (%34) ve çok yüksek (%40) erozyon riski oluşturduğu belirlenmiştir. Mevsimsel MFI analiz sonuçlarına göre ise genellikle SMFIKış değerleri yüksek ve çok yüksek erozyon riski, SMFIİlkbahar ve SMFIYaz değerleri erozyon riski yok veya çok düşük, SMFISonbahar değerleri ise orta, yüksek ve çok yüksek (yaklaşık %62 oranında) erozyon riski göstermektedir. 50 yıllık çalışma periyoduna ait SI analiz sonuçlarına göre ise SI değerlerinin yaklaşık yarısı uzun bir kurak mevsim ile belirgin bir şekilde mevsimsel yağışları temsil etmektedir. Aylık toplam yağış, yıllık toplam yağış, APCI, SPCI, AMFI, SMFI ve SI değerlerinin Mann-Kendall trend sonuçları ise 1970-2019 periyodu için anlamlı trendler olmadığını göstermektedir.

References

  • Apaydin, H., Erpul, G., Bayramin, I., & Gabriels, D. (2006). Evaluation of indices for characterizing the distribution and concentration of precipitation: a case for the region of Southeastern Anatolia Project, Turkey. Journal of Hydrology, 328, 726-732.
  • Arnoldus, H. M. J. (1980). An approximation of the rainfall factor in the Universal Soil Loss Equation. In: De Boodt M, Gabriels D (eds), Assessment of Erosion, John Wiley & Sons, New York.
  • Back, Á. J., Gonçalves, F. N., & Fan, F. M. (2019). Spatial, seasonal, and temporal variations in rainfall aggressiveness in the south of Brazil. Eng. Agrícola, 39, 466-475.
  • Bayramin, I., Erpul, G., & Erdogan, H. E. (2006). Use of CORINE methodology to assess soil erosion risk in the semi-arid area of Beypazarı, Ankara. Turk. J. Agric. For., 30, 81-100.
  • Bhatti, A. S., Wang, G., Ullah, W., Ullah, S., Tawia Hagan, D. F., Nooni, I. K., Lou, D., & Ullah, I. (2020). Trend in extreme precipitation indices based on long term In situ precipitation records over Pakistan. Water, 12, 1-19.
  • De Luis, M., Gonzales-Hidalgo, J.C., & Longares, L. A. (2010). Is rainfall erosivity increasing in the Mediterranean Iberian Peninsula?. Land Degrad. Dev., 21, 139-144.
  • Degefu, M. A., & Bewket, W. (2013). Variability and trends in rainfall amount and extreme event indices in the Omo-Ghibe River Basin, Ethiopia. Reg Environ Change, 14, 799-810.
  • Diodato, N., & Bellocchi, G. (2009). Assessing and modelling changes in rainfall erosivity at different climate scales. Earth Surface Processes and Landforms, 34(7), 969–980.
  • Doyle, M. E. (2020). Observed and simulated changes in precipitation seasonality in Argentina. Int J Climatol. , 40, 1716-1737.
  • Fournier, F. (1960). Climat et erosion: la relation entre l'érosion du sol par l'eau et les précipitations atmosphériques. Paris: Presses Universitaires de France.
  • Guhathakurta, P., & Saji, E. (2013). Detecting changes in rainfall pattern and seasonality index vis-a-vis increasing water scarcity in Maharashtra. J. Earth Syst. Sci., 122(3), 639-649.
  • Huang, J., Liu, F., Xue, Y., & Sun, S. (2015). The spatial and temporal analysis of precipitation concentration and dry spell in Qinghai, northwest China. Stoch Environ Res Risk Assess, 29, 1403-1411.
  • Jebari, S., Berndtsson, R., Bahri, A., & Boufaroua, M. (2008). Exceptional Rainfall Characteristics Related to Erosion Risk in Semiarid Tunisia. The Open Hydrology Journal, 1, 25-33.
  • Kahya, E., & Kalayci, S. (2004). Trend analysis of streamflow in Turkey. Journal of Hydrology, 89, 128-144.
  • Kendall, M. G. (1975). Rank Correlation Methods. London: Griffin.
  • Khalili, K., Tahoudi, M. N., Mirabbasi, R., & Ahmadi, F. (2016). Investigation of spatial and temporal variability of precipitation in Iran over the last half century. Stoch Environ Res Risk Assess, 30, 1205-1211.
  • Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13, 245-259.
  • Mitchell, J. M., Dzerdzeevskii, B., Flohn, H., Hofmeyr, W. L., Lamb, H.C., Rao, K N., et al. (1966). Climate change (Cilt No.79). Geneva: WMO Technical Note.
  • Munka, C., Cruz, G., & Caffera, R. M. (2007). Long term variation in rainfall erosivity in Uruguay: a preliminary Fournier approach. GeoJournal, 70, 257-262.
  • Nery, J. T., Carfan, A. C., & Martin-Vide, J. (2017). Analysis of Rain Variability Using the Daily and Monthly Concentration Indexes in Southeastern Brazil. Atmospheric and Climate Sciences, 7, 176-190.
  • Nunes, A. N., Lourenço, L., Vieira, A., & Bento-Gonçalve, A. (2016). Precipitation and erosivity in Southern Portugal: seasonal variability and trends (1950-2008). Land Degrad. Dev, 27, 211-222.
  • Oliver, J. E. (1980). Monthly precipitation distribution: a comparative index. Prof Geogr, 32, 300-309.
  • Shawul, A. A., & Chakma, S. (2020). Trend of extreme precipitation indices and analysis of long-term climate variability in the Upper Awash Basin, Ethiopia. Theoretical and Applied Climatology, 140, 635-652.
  • Walsh, R. P. D., & Lawler, D. M. (1981). Rainfall seasonality: Description, spatial patterns and change through time. Weather, 36(7), 201-208.
  • Zhang, D., Wang, T., Liu, Y., Zhang, S., & Meng, X. (2021). Spatial and temporal characteristics of annual and seasonal precipitation variation in Shijiazhuang region, north China. Environ Earth Sci, 80, 656.
  • Zhang, K., Yao, Y., Qian, X., & Wang, J. (2019). Various characteristics of precipitation concentration index and its cause analysis in China between 1960 and 2016. Int J Climatol, 1-11.

Assessment of Concentration, Erosivity and Seasonality of Precipitation Data for 1970-2019 Period of Karataş Gauging Station

Year 2021, , 118 - 125, 31.12.2021
https://doi.org/10.31590/ejosat.1040131

Abstract

Temporal and spatial variations in precipitation as a result of the effects of climate change generally cause a flood, drought, soil erosion, etc. events to occur. For this reason, determining the precipitation variability in a region is quite important in protecting soil and water resources and in struggling soil erosion. This study aims to examine the monthly and annual variation of precipitation, annual and seasonal precipitation concentration (APCI and SPCI), annual and seasonal precipitation erosivity (AMFI) and SMFI, and seasonality of precipitation (SI) of the Karataş meteorological station in the Seyhan Basin for the period 1970-2019. In addition, the change of these parameters in the examined period was examined using the Mann-Kendall (MK) trend test. According to the results obtained, generally irregular and strong irregular precipitation distribution was obtained in the APCI values calculated for the Karataş station. According to SPCI analysis, SPCIWinter values are uniform and moderate, SPCISpring values are moderate, SPCISummer values are strongly irregular, and SPCIAutumn values have moderate precipitation distribution. According to the AMFI values calculated to examine the precipitation erosivity, it was determined that the precipitation generally constitutes a high (34%) and a quite high (40%) erosion risk. According to seasonal MFI analysis results, SMFIWinter values generally show a high and very high erosion risk, SMFISpring and SMFISummer values show no or very low erosion risk, and SMFIAutumn values show moderate, high and very high (about 62%) erosion risk. According to the SI analysis results of the 50-year study period, about half of the SI values represent significant seasonal precipitation with a long dry season. The Mann-Kendall trend results of monthly total precipitation, annual total precipitation, APCI, SPCI, AMFI, SMFI and SI values show that there are no significant trends for the 1970-2019 period.

References

  • Apaydin, H., Erpul, G., Bayramin, I., & Gabriels, D. (2006). Evaluation of indices for characterizing the distribution and concentration of precipitation: a case for the region of Southeastern Anatolia Project, Turkey. Journal of Hydrology, 328, 726-732.
  • Arnoldus, H. M. J. (1980). An approximation of the rainfall factor in the Universal Soil Loss Equation. In: De Boodt M, Gabriels D (eds), Assessment of Erosion, John Wiley & Sons, New York.
  • Back, Á. J., Gonçalves, F. N., & Fan, F. M. (2019). Spatial, seasonal, and temporal variations in rainfall aggressiveness in the south of Brazil. Eng. Agrícola, 39, 466-475.
  • Bayramin, I., Erpul, G., & Erdogan, H. E. (2006). Use of CORINE methodology to assess soil erosion risk in the semi-arid area of Beypazarı, Ankara. Turk. J. Agric. For., 30, 81-100.
  • Bhatti, A. S., Wang, G., Ullah, W., Ullah, S., Tawia Hagan, D. F., Nooni, I. K., Lou, D., & Ullah, I. (2020). Trend in extreme precipitation indices based on long term In situ precipitation records over Pakistan. Water, 12, 1-19.
  • De Luis, M., Gonzales-Hidalgo, J.C., & Longares, L. A. (2010). Is rainfall erosivity increasing in the Mediterranean Iberian Peninsula?. Land Degrad. Dev., 21, 139-144.
  • Degefu, M. A., & Bewket, W. (2013). Variability and trends in rainfall amount and extreme event indices in the Omo-Ghibe River Basin, Ethiopia. Reg Environ Change, 14, 799-810.
  • Diodato, N., & Bellocchi, G. (2009). Assessing and modelling changes in rainfall erosivity at different climate scales. Earth Surface Processes and Landforms, 34(7), 969–980.
  • Doyle, M. E. (2020). Observed and simulated changes in precipitation seasonality in Argentina. Int J Climatol. , 40, 1716-1737.
  • Fournier, F. (1960). Climat et erosion: la relation entre l'érosion du sol par l'eau et les précipitations atmosphériques. Paris: Presses Universitaires de France.
  • Guhathakurta, P., & Saji, E. (2013). Detecting changes in rainfall pattern and seasonality index vis-a-vis increasing water scarcity in Maharashtra. J. Earth Syst. Sci., 122(3), 639-649.
  • Huang, J., Liu, F., Xue, Y., & Sun, S. (2015). The spatial and temporal analysis of precipitation concentration and dry spell in Qinghai, northwest China. Stoch Environ Res Risk Assess, 29, 1403-1411.
  • Jebari, S., Berndtsson, R., Bahri, A., & Boufaroua, M. (2008). Exceptional Rainfall Characteristics Related to Erosion Risk in Semiarid Tunisia. The Open Hydrology Journal, 1, 25-33.
  • Kahya, E., & Kalayci, S. (2004). Trend analysis of streamflow in Turkey. Journal of Hydrology, 89, 128-144.
  • Kendall, M. G. (1975). Rank Correlation Methods. London: Griffin.
  • Khalili, K., Tahoudi, M. N., Mirabbasi, R., & Ahmadi, F. (2016). Investigation of spatial and temporal variability of precipitation in Iran over the last half century. Stoch Environ Res Risk Assess, 30, 1205-1211.
  • Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13, 245-259.
  • Mitchell, J. M., Dzerdzeevskii, B., Flohn, H., Hofmeyr, W. L., Lamb, H.C., Rao, K N., et al. (1966). Climate change (Cilt No.79). Geneva: WMO Technical Note.
  • Munka, C., Cruz, G., & Caffera, R. M. (2007). Long term variation in rainfall erosivity in Uruguay: a preliminary Fournier approach. GeoJournal, 70, 257-262.
  • Nery, J. T., Carfan, A. C., & Martin-Vide, J. (2017). Analysis of Rain Variability Using the Daily and Monthly Concentration Indexes in Southeastern Brazil. Atmospheric and Climate Sciences, 7, 176-190.
  • Nunes, A. N., Lourenço, L., Vieira, A., & Bento-Gonçalve, A. (2016). Precipitation and erosivity in Southern Portugal: seasonal variability and trends (1950-2008). Land Degrad. Dev, 27, 211-222.
  • Oliver, J. E. (1980). Monthly precipitation distribution: a comparative index. Prof Geogr, 32, 300-309.
  • Shawul, A. A., & Chakma, S. (2020). Trend of extreme precipitation indices and analysis of long-term climate variability in the Upper Awash Basin, Ethiopia. Theoretical and Applied Climatology, 140, 635-652.
  • Walsh, R. P. D., & Lawler, D. M. (1981). Rainfall seasonality: Description, spatial patterns and change through time. Weather, 36(7), 201-208.
  • Zhang, D., Wang, T., Liu, Y., Zhang, S., & Meng, X. (2021). Spatial and temporal characteristics of annual and seasonal precipitation variation in Shijiazhuang region, north China. Environ Earth Sci, 80, 656.
  • Zhang, K., Yao, Y., Qian, X., & Wang, J. (2019). Various characteristics of precipitation concentration index and its cause analysis in China between 1960 and 2016. Int J Climatol, 1-11.
There are 26 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Cihangir Köyceğiz 0000-0002-0510-1164

Meral Büyükyıldız 0000-0003-1426-3314

Publication Date December 31, 2021
Published in Issue Year 2021

Cite

APA Köyceğiz, C., & Büyükyıldız, M. (2021). Assessment of Concentration, Erosivity and Seasonality of Precipitation Data for 1970-2019 Period of Karataş Gauging Station. Avrupa Bilim Ve Teknoloji Dergisi(32), 118-125. https://doi.org/10.31590/ejosat.1040131