Research Article
BibTex RIS Cite

İçortam Görünür Işık Haberleşme Kanallarında Güç Analizi

Year 2021, , 536 - 541, 31.12.2021
https://doi.org/10.31590/ejosat.1040234

Abstract

Optik kablosuz haberleşme teknolojisi, radyo frekansı iletişiminin önemli bir alternatifi olarak ortaya çıkmıştır. RF iletişimdeki bandgenişliğinin sınırlı olması nedeniyle, kullanıcıların yüksek hızlı kablosuz iletişim sistemlerine olan ihtiyacı artmaktadır. RF sisteminin kontrolsüz radyasyon, sınırlı bandgenişliği, düzenlenmiş frekans ve mobil kullanıcı sayısının artması gibi birtakım kısıtlamaları nedeniyle, RF tabanlı iletişim son yıllarda spektrum darlığı sorunuyla karşı karşıya kalmıştır. RF’ten farklı olarak görünür ışık haberleşmesi (VLC), iletim kanalları için görünür ışık spektrum tayfında daha yüksek frekans bantları tercih edilir. Band genişliği avantajı nedeniyle VLC için görünür ışık frekans bandı kullanılmakta, bu sayede yüksek aktarım hızı ve elektromanyetik girişime dayanıklı olduğu için büyük avantaj sağlanmaktadır. Bu açıdan optik kablosuz iletişim, yeni nesil kablosuz iletişim sistemleri için umut verici bir çözüm olarak değerlendirilmektedir. Bu çalışmada VCL sistemlerinin tek dallı doğrudan görüş (Line-of-sight, LOS) düz sönümlü kanallarda güç analizi incelenmiş, kanal darbe cevabı ve optik güç dağılımları analiz edilmiştir.

References

  • Aster Spectral Library-Version 2.0. (tarih yok). 10 6, 2021 tarihinde nasa.gov: http://speclib.jpl.nasa.gov adresinden alındı.
  • Elgala, H., Mesleh, R., & Haas, H. (2010). An LED Model For Intensity-Modulated Optical Communication Systems. IEEE Photonics Technology Letters, 22(11), 835-837.
  • Fiorarli, M. (2014). Challenges for 5G Transport Networks. IEEE 2014 International Conference on Advanced Networks and Telecommunications Systems. New Delhi.
  • Gfeller, F., & Bapst, U. (1979). Wireless in-house data communication via diffuse infrared radiation. Proceedings of the IEEE, 67(11), 1474-1486.
  • Ghassemlooy, Z., Hayes, A., & Wilson, B. (2003). Reducing the effects of intersymbol interference in diffuse DPIM optical wireless communications. IEE Proceedings Optoelectronics, 445-452.
  • Ghassemlooy, Z., Popoola, W., & Rajbhandari, S. (2019). Optical Wireless Communications. Florida, ABD: CRC Press.
  • Hayasaka, N., & Ito, T. (2007). Channel modeling of nondirected wireless infrared indoor diffuse link. Electronics and Communication in Japan, 9-19.
  • He, X., Cao, G., & Zou, N. (2011). Simulation of White Light Based on Mixed RGB LEDs. IET International Conference on Communication Technology and Application. Beijing.
  • Kahn, J., & Barry, J. (1997). Wireless Infrared Communications. Proceedings of IEEE.
  • Kahn, J., Krause, W., & Carruthers, J. B. (1995). Experimental Characterization of Non directed Indoor Infrared Channels. IEEE Transactions on Communications, 40(234), 1613-1623.
  • Lee, K., Park, H., & Barry, J. (2011). Indoor Channel Characteristics for Visible Light Communications. IEEE Communications Letters, 15(2), 217-219.
  • Lomba, C., Valadas, R., & Duarte, A. (2000). Efficient simulation of the impulse response of the indoor wireless optical channel. International Journal of Communication Systems, 537-549.
  • Marcus, M., & Pattan, B. (2005). Millimeter Wave Propagation: Spectrum Management Implications. IEEE Microwave Magazine, 6(2), 54-62.
  • Moreira, A., Valadas, R., & Duarte, A. (1997). Optical interference produced by artificial light. Wireless Networks, 131-140.
  • Moreira, A., Valadas, R., & Duarte, A. (1997). Optical Interference produced by artificial light. Wireless Networks, 3(2), 131-140.
  • Narasimhan, R., Audeh, M., & Kahn, J. (1996). Effect of electronic-ballast fluorescent lighting on wireless infrared links. IEE Proceedings-Optoelectronics, 143, 347-354.
  • Ramaswami, R. (2002). Optical Fiber Communication: From Transmission to Networking. IEEE Communications Magazine, 40(5), 138-147.
  • Ricklin, J., Hammel, S., Eaton, F., & Lachinova, S. (2006). Atmospheric channel effects on free space laser communication. Journal of Optical and Fiber Communications Research , 111-156.
  • Song, M., Pincemin, E., Vgenopoulou, V., Roudas, I., Amhoud, E., & Jaouen, Y. (2015). Transmission performances of 400 Gbps coherent 16-QAM multi-band OFDM adopting nonlinear mitigation techniques. 2015 Tyrrhenian International Workshop on Digital Communications. Florence.
  • Street, M., Stavrinou, P., Obrien, D., & Edwards, D. (1997). Indoor optical wireless systems. Optical and Quantum Electronics, 349-378.
  • Tekin, M., Savaşcıhabeş, A., & Ertuğ, Ö. (2021). M-CSK-Flip-OFDM for Visible Light Communication Systems. 44th International Conference on Telecommunications and Signal Processing, (s. 106-109). Brno, Czech Republic.
  • Xu, X. (2015). Advanced Modulation Formats for 400-Gbps Short-reach Optical Inter-Connection. Optics Express, 23(1), 492-500.
  • Zhang, S. (2017). Capacity-Approaching Transmission over 6375 km Using Hybrid Quasi-Single-Mode fiber Spans. Journal of Lightwave Technology, 35(3), 481-487.

Power Analysis for Indoor Visible Light Communication Channels

Year 2021, , 536 - 541, 31.12.2021
https://doi.org/10.31590/ejosat.1040234

Abstract

One of the most important alternative techniques for radio frequency communications is optical wireless communication technology. Due to the RF bandwidth limitation, the need for high speed wireless communication systems has been increasing in recent years. Due to the limitations of the RF system such as uncontrolled radiation, limited bandwidth, regulated frequency, and the increase in the number of mobile users, RF-based communication has faced a serious spectrum problem in recent years. Visible light communication (VLC) uses higher frequency bands in the visible light spectrum for the transmission medium. Considering the visible light spectrum due to its bandwidth advantage, VLC is advantageous as it offers high transmission speed and strong resistance to electromagnetic interference. In this respect, optical wireless communication is considered as a promising solution for new generation wireless communication systems. In this paper we investigate channel impulse response and power analysis of VLC systems over single-tap Line-of-sight (LOS) flatfading channels.

References

  • Aster Spectral Library-Version 2.0. (tarih yok). 10 6, 2021 tarihinde nasa.gov: http://speclib.jpl.nasa.gov adresinden alındı.
  • Elgala, H., Mesleh, R., & Haas, H. (2010). An LED Model For Intensity-Modulated Optical Communication Systems. IEEE Photonics Technology Letters, 22(11), 835-837.
  • Fiorarli, M. (2014). Challenges for 5G Transport Networks. IEEE 2014 International Conference on Advanced Networks and Telecommunications Systems. New Delhi.
  • Gfeller, F., & Bapst, U. (1979). Wireless in-house data communication via diffuse infrared radiation. Proceedings of the IEEE, 67(11), 1474-1486.
  • Ghassemlooy, Z., Hayes, A., & Wilson, B. (2003). Reducing the effects of intersymbol interference in diffuse DPIM optical wireless communications. IEE Proceedings Optoelectronics, 445-452.
  • Ghassemlooy, Z., Popoola, W., & Rajbhandari, S. (2019). Optical Wireless Communications. Florida, ABD: CRC Press.
  • Hayasaka, N., & Ito, T. (2007). Channel modeling of nondirected wireless infrared indoor diffuse link. Electronics and Communication in Japan, 9-19.
  • He, X., Cao, G., & Zou, N. (2011). Simulation of White Light Based on Mixed RGB LEDs. IET International Conference on Communication Technology and Application. Beijing.
  • Kahn, J., & Barry, J. (1997). Wireless Infrared Communications. Proceedings of IEEE.
  • Kahn, J., Krause, W., & Carruthers, J. B. (1995). Experimental Characterization of Non directed Indoor Infrared Channels. IEEE Transactions on Communications, 40(234), 1613-1623.
  • Lee, K., Park, H., & Barry, J. (2011). Indoor Channel Characteristics for Visible Light Communications. IEEE Communications Letters, 15(2), 217-219.
  • Lomba, C., Valadas, R., & Duarte, A. (2000). Efficient simulation of the impulse response of the indoor wireless optical channel. International Journal of Communication Systems, 537-549.
  • Marcus, M., & Pattan, B. (2005). Millimeter Wave Propagation: Spectrum Management Implications. IEEE Microwave Magazine, 6(2), 54-62.
  • Moreira, A., Valadas, R., & Duarte, A. (1997). Optical interference produced by artificial light. Wireless Networks, 131-140.
  • Moreira, A., Valadas, R., & Duarte, A. (1997). Optical Interference produced by artificial light. Wireless Networks, 3(2), 131-140.
  • Narasimhan, R., Audeh, M., & Kahn, J. (1996). Effect of electronic-ballast fluorescent lighting on wireless infrared links. IEE Proceedings-Optoelectronics, 143, 347-354.
  • Ramaswami, R. (2002). Optical Fiber Communication: From Transmission to Networking. IEEE Communications Magazine, 40(5), 138-147.
  • Ricklin, J., Hammel, S., Eaton, F., & Lachinova, S. (2006). Atmospheric channel effects on free space laser communication. Journal of Optical and Fiber Communications Research , 111-156.
  • Song, M., Pincemin, E., Vgenopoulou, V., Roudas, I., Amhoud, E., & Jaouen, Y. (2015). Transmission performances of 400 Gbps coherent 16-QAM multi-band OFDM adopting nonlinear mitigation techniques. 2015 Tyrrhenian International Workshop on Digital Communications. Florence.
  • Street, M., Stavrinou, P., Obrien, D., & Edwards, D. (1997). Indoor optical wireless systems. Optical and Quantum Electronics, 349-378.
  • Tekin, M., Savaşcıhabeş, A., & Ertuğ, Ö. (2021). M-CSK-Flip-OFDM for Visible Light Communication Systems. 44th International Conference on Telecommunications and Signal Processing, (s. 106-109). Brno, Czech Republic.
  • Xu, X. (2015). Advanced Modulation Formats for 400-Gbps Short-reach Optical Inter-Connection. Optics Express, 23(1), 492-500.
  • Zhang, S. (2017). Capacity-Approaching Transmission over 6375 km Using Hybrid Quasi-Single-Mode fiber Spans. Journal of Lightwave Technology, 35(3), 481-487.
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Asuman Savaşçıhabeş 0000-0002-7261-1906

Publication Date December 31, 2021
Published in Issue Year 2021

Cite

APA Savaşçıhabeş, A. (2021). İçortam Görünür Işık Haberleşme Kanallarında Güç Analizi. Avrupa Bilim Ve Teknoloji Dergisi(32), 536-541. https://doi.org/10.31590/ejosat.1040234