Research Article
BibTex RIS Cite

Farklı Termal Oksidasyon Ortamlarında Nanoyapılı CuO Filmler: Üretim ve XRD, UV-NIR, FESEM ve Raman Araştırmaları

Year 2021, , 248 - 256, 31.12.2021
https://doi.org/10.31590/ejosat.1040788

Abstract

Bu çalışmada, CuO filmleri ardışık iyonik tabaka adsorpsiyonu ve reaksiyonu (SILAR) yöntemiyle üretilmiştir. CuO filmlerine hava, oksijen ve argon olmak üzere üç farklı ortamda oksidasyon işlemi uygulanmıştır. Oksidasyon işlemi sırasında CuO filmleri her ortamda 400 °C'de 2 saat tutulmuştur. CuO filmlerinin oksidasyon işleminde seçilen ortamın filmlerin fiziksel özellikleri üzerindeki etkisi araştırılmıştır. Bu çalışma, CuO filmlerinin fiziksel özelliklerinin farklı oksidasyon ortamlarında önemli ölçüde değişebileceğini göstermiştir. XRD çalışmaları, tüm filmlerin monoklinik yapıya sahip polikristal olduğunu ve (-111) ve (111) tercihli yönelimler sergilediğini ortaya koymaktadır. Tane boyutlarının farklı oksidasyon ortamlarında 26-28 nm aralığında değiştiği belirlenmiştir. XRD sonuçları Raman spektrum analizi ile doğrulanmıştır. Bant aralığı değerleri 1.80'den 2.11 eV'ye yükselmiştir. Ayrıca CuO filmlerinin argon ortamında oksidasyonu ile kristal melanothallit yapısının oluştuğu ve yüzey morfolojisinin önemli ölçüde değiştiği keşfedilmiştir.

Project Number

FF12035B17

References

  • Johan, M. R., Mohd Suan, M. S., Hawari, N. L., Ching, H. A. (2011). Annealing Effects on the Properties of Copper Oxide Thin Films Prepared by Chemical Deposition. International Journal of Electrochemical Science, (6), 6094-6104.
  • Serin, N., Serin, T., Horzum, S., Çelik, Y. (2005). Annealing Effects on the properties of copper oxide thin films prepared by shemical Deposition. Semiconductor and Science Technology, (20), 398-401.
  • Akgül, F. A., Akgül, G., Yıldırım, N., Ünalan, H. E., Turan, R. (2014). Influence of Thermal Annealing on Microstructural, Morphological, Optical Properties and Surface Electronic Structure of Copper Oxide Thin Films. Material Chemistry and Physics, (147), 987-995.
  • Ahmad, R., Tripathy, N., Hahn, Y. B., Umar, A., Ibrahim, A. A., Kim S. H., Robust, A. (2015). Enzymeless Glucose Sensor Based on CuO Nanoseed Modified Electrodes. Dalton Transactions, (44), 12488-12492.
  • Sangwaranatee, N., Horprathum, M., Chananonnawathorn, C. (2018). Effect of Annealing Treatment on Sputtered Copper Oxide Thin Film. Materials Today: Proceedings, (5), 15170–15173.
  • Verma, M. K., Gupta, V. (2012). A Highly Sensitive SnO2–CuO Multilayered Sensor Structure for Detection of H2S Gas. Sensors and Actuators B: Chemical, (166), 378-385.
  • Zou, H., Chen, S., Liu, Z., Lin, W. (2011). Selective CO Oxidation Over CuO-CeO2 Catalysts Doped with Transition Metal Oxides. Powder Technology, (207), 238-244.
  • Umar, A., Rahman M. M., Al-Hajry, A., Hahn Y. B. (2009). MgO Polyhedral Nanocages and Nanocrystals Based Glucose Biosensor. Electrochemistry Communications Electrochemistry Communications, (11), 278-281.
  • Kumar, K., Suresh. S., Murugesan, S., Raj, S. (2013). CuO Thin Films Made of Nanofibers for Solar Selective Absorber Applications. Solar Energy, (94), 299-304.
  • Heng, B., Qing, C., Wang, H., Sun, D., Wang, Tang, Y. (2015). Facile Synthesis of Fe-Incorporated CuO Nanoarrays with Enhanced Electrochemical Performance for Lithium Ion Full Batteries. Journal of Alloys and Compounds, (649), 899-905.
  • Bednorz, J. G., Müller, K. A. (1986). Possible High Tc Superconductivity in the Ba-La-Cu-O System. Zeitschrift für Physik B Condensed Matter, (64), 189-193.
  • Itoh, T. and Maki, K. (2007). Growth Process of CuO (1 1 1) and Cu2O (0 0 1) Thin Films on MgO(0 0 1) Substrate Under Metal-Mode Condition by Reactive DC-Magnetron Sputtering. Vacuum, (81), 1068–76.
  • Mukherjee, N., Show, B., Maji, S. K., Madhu, U., Bhar, S. K., Mitra, B. ,C., Khan, G.G., Mondal, A. (2011). CuO Nano-Whiskers: Electrodeposition, Raman Analysis, Photoluminescence Study and Photocatalytic Activity. Material Letters, (65), 3248–50.
  • Jin, C., Kim, H., An, S., Lee, C. (2012). Highly Sensitive H2S Gas Sensors Based on CuO-Coated ZnSnO3 Nanorods Synthesized by Thermal Evaporation. Ceramics International, (38), 5973–78.
  • Koh, T., O’Hara, E., Gordon, M. J. (2013). Growth of nanostructured CuO thin films via microplasma-assisted, reactive chemical vapor deposition at high pressures. Journal of Crystralline Growth, (363). 69–75.
  • Qin, H., Zhang, Z., Liu, X., Zhang, Y., Hu, J. (2010). Room-Temperature Ferromagnetism in CuO Sol–Gel Powders and Films. Journal of Magnetism and Magnetic Materials, (322), 1994–1998.
  • Bayansal, F., Çetinkara H. A., Kahraman, S., Cakmak, H. M., Güder H. S. (2012). Nano-Structured CuO Films Prepared by Simple Solution Methods: Plate-like, Needle-likeand Network-Like Architectures. Ceramics Intirnational, (38), 1859–66.
  • Halin, D. S. C., Talib, I. A., Daud, A. R., Hamid, M. A. A. (2014). Effect of Annealing Atmosphere on the Morphology of Copper Oxide Thin Films Deposited on TiO2 Substrates Prepared by Sol-Gel Process. Key Engineering Materials, (594), 113-117.
  • Bayansal, F., Taşköprü, T., Şahin, B., Çetinkara, H. A. (2014). Effect of Cobalt Doping on Nanostructured CuO Thin Films. Metallurgical and Materials Transactions A, (45), 3670-3674.
  • Saad, H. B., Ajili, M., Dabbabi, S., Kamoun, N. T. (2020). Investigation on Thickness and Annealing Effects on Physical Properties and Electrical Circuit Model of CuO Sprayed Thin Films. Superlattices and Microstructures, (142), 106508.
  • Özaslan, D., Erken, O., Güneş, M., Gümüş, C. (2020). The Effect of Annealing Temperature on the Physical Properties of Cu2O Thin Film Deposited by SILAR Method. Physica B: Physics of Condensed Matter, (580), 411922.
  • Singh, R., Yadav, L., Tripath. S. (2019). Effect of Annealing Time on The Structural and Optical Properties of n-CuO Thin films Deposited by Sol-Gel Spin Coating Technique and Its Application in n-CuO/p-Si Heterojunction Diode. Thin Solid Films, (685), 195-203.
  • Shevko, V., Lavrov, B., Serzhanov, G., Badikova, A., Uteeva, R. (2015). Chlorination of Atacamite. Industrial Technology and Engineering, (3-16), 84-91.
  • Gençyılmaz, O., Taşköprü, T. (2017). Effect of pH on the Synthesis of CuO Films by SILAR Method. Journal of Alloys and Compounds, (695), 1205-1212.
  • Zamfirescu, C., Dinçer, İ., Naterer, G. F. (2010). Thermophysical Properties of Copper Compounds in Copper–Chlorine Thermochemical Water Splitting Cycles. International Journal of Hydrogen Energy, (35), 4839-4852.
  • Pankove, J. I. (1975). Optical Processes in Semiconductors. Dover, New York.
  • Chrzanowski, J., Irwin, J.C. (1989). Raman Scattering from Cupric Oxide. Solid State Communications, (70), 11–14.
  • Anthony, J. W. (1997). Handbook of Mineralogy, Halides, Hydroxides, Oxides. Mineral Data Publishing.
  • Urbach, F. (1953). The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids. Physical Review, (92), 1324.
  • Boubaker, K. (2011). Atomic Structures Beyond the Spherical Approximation Along with PNC as Conjectured Explanations to Urbach Tailing in Neutral İsolated Ytterbium. The European Physical Journal B, (84), 235-239.
  • Ftericha, M., Nasra, F. B., Lefia, R., Toumib M., Guermazi S. (2016). Effect of Concentration of Hexamethylenetetramine in Structure, Microstructure and Optical Properties of CuO Nanoparticles Synthesized by Hydrotermal Route. Materials Science in Semiconductor Processing, (43), 114-122.
  • Mahr, H. (1962). Ultraviolet Absorption of KI Diluted in KCL Crystals. Physical Review, (125), 1510.
  • Mageshwari, K., Sathyamoorthy R. (2013). Physical Properties of Nanocrystalline CuO Thin Films Prepared by the SILAR Method. Material Science and Semiconductor Processing, (16), 337–343.
  • Akaltun, Y. (2015). Effect of Thickness on the Structural and Optical Properties of CuO Thin Films Grown by Successive Ionic Layer Adsorption and Reaction. Thin Solid Films, (594), 30-34.
  • Centi, G., Trifiro, F. (1989). Studies in Surface Science and Catalysis, Italy, 55.
  • Dhaouadi, M., Jlassi, M., Sta, I., Miled, I. B., Mousdis, G., Kompitsas, M., Dimassi, W. (2019). Influence of Pd-Doping on Structural, Morphological, Optical and Electrical Properties of Sol–Gel Derived CuO Thin Films. Surfaces and Interfaces, (17), 100352.
  • Moumen, A., Hartiti, B., Comini, E., Khalidi Z. E., Munasinghe, H. M. M., Fadili, S., Thevenin, P. (2019). Preparation and Characterization of Nanostructured CuO Thin films Using Spray Pyrolysis Technique. Superlattices and Microstructures, (127), 2-10.
  • Djebian, R., Boudjema, B., Kabir, A., Sedrati, C. (2020). Physical Characterization of CuO Thin Films Obtained by Thermal Oxidation of Vacuum Evaporated Cu. Solid State Science, (101), 106147.
  • Yuksel, M., Pennings, J. R., Bayansal, F., Yeow, John T.W. (2020). Effect of B-Doping On the Morphological, Structural and Optical Properties of SILAR Deposited CuO Films, Physica B: Physics of Condensed Matter, (599), 412578.
  • Çavuşoğu, H., Aydın, R. (2019). Complexing Agent Triethanolamine Mediated Synthesis of Nanocrystalline CuO Thin Films at Room Temperature via SILAR Technique. Superlattices and microstructures, (128), 37-37.
  • Zgaira, I. A., Omran Alkhayatta, A. H., Muhmooda, A. A., Hussain, S. K. (2019). Investigation of Structure, Optical and Photoluminescence Characteristics of Li Doped CuO Nanostructure Thin Films Synthesized by SILAR Method. Optik, (91), 48-54.
  • Daoudi, O., Qachaou, Y., Raidou, A., Nouneh, K., Lharch, M., Fahoume, M. (2019). Study of the Physical Properties of CuO Thin Films Grown by Modified SILAR Method for Solar Cells Applications. Superlattices and microstructures, (127), 93-99.
  • Bayansal, F., Şahin, B., Yüksel, M., Çetinkara H. A. (2014). Modification of Morphological, Structural and Optical Properties of SILAR-Based Growth of CuO Films on Glass-Slides by Addition of Dextrin. Journal of Alloys and Compounds, (614), 379-382.
  • Peng, W., Zhou, Y., Li, J., Liu, Y., Zhang, J., Xiang, G., Zhu, X., Li, R., Wang, H., Zhao, Y. (2021). Annealing Temperature Induced Physical Characteristics of CuO Films Grown by Magnetron Sputtering. Materials Science in Semiconductor Processing, (131), 105883.

The Nanostructured CuO Films in The Different Thermal Oxidation Mediums: Production and XRD, UV-vis-NIR, FESEM and Raman Investigations

Year 2021, , 248 - 256, 31.12.2021
https://doi.org/10.31590/ejosat.1040788

Abstract

In this work, CuO films were produced by the successive ionic layer adsorption and reaction (SILAR) method. The oxidation process was applied to CuO films in three different mediums as air, oxygen and argon. CuO films were kept at 400 °C for 2 hours in each medium during the oxidation process. The effect of the selected medium in the oxidation process on the physical properties of the CuO films was investigated. This study showed that the physical properties of the CuO films can vary significantly in different oxidation mediums. XRD studies reveal that all the films are polycrystalline with monoclinic structure and exhibit (-111) and (111) preferential orientations. Grain sizes were determined to vary in the range of 26-28 nm in different oxidation mediums. The XRD results were confirmed by Raman spectrum analysis. The band gap values increased between from 1.80 to 2.11 eV. In addition, it was discovered that with the oxidation of CuO films in argon medium, crystalline melanothallite structure was formed and the surface morphology was significantly changed.

Supporting Institution

Çankırı Karatekin Üniversitesi

Project Number

FF12035B17

Thanks

Thankful to Prof. Dr. Evren TURAN and her doctoral students, Eskişehir Technical University, Eskişehir, Turkey, for providing the facilities of characterization.

References

  • Johan, M. R., Mohd Suan, M. S., Hawari, N. L., Ching, H. A. (2011). Annealing Effects on the Properties of Copper Oxide Thin Films Prepared by Chemical Deposition. International Journal of Electrochemical Science, (6), 6094-6104.
  • Serin, N., Serin, T., Horzum, S., Çelik, Y. (2005). Annealing Effects on the properties of copper oxide thin films prepared by shemical Deposition. Semiconductor and Science Technology, (20), 398-401.
  • Akgül, F. A., Akgül, G., Yıldırım, N., Ünalan, H. E., Turan, R. (2014). Influence of Thermal Annealing on Microstructural, Morphological, Optical Properties and Surface Electronic Structure of Copper Oxide Thin Films. Material Chemistry and Physics, (147), 987-995.
  • Ahmad, R., Tripathy, N., Hahn, Y. B., Umar, A., Ibrahim, A. A., Kim S. H., Robust, A. (2015). Enzymeless Glucose Sensor Based on CuO Nanoseed Modified Electrodes. Dalton Transactions, (44), 12488-12492.
  • Sangwaranatee, N., Horprathum, M., Chananonnawathorn, C. (2018). Effect of Annealing Treatment on Sputtered Copper Oxide Thin Film. Materials Today: Proceedings, (5), 15170–15173.
  • Verma, M. K., Gupta, V. (2012). A Highly Sensitive SnO2–CuO Multilayered Sensor Structure for Detection of H2S Gas. Sensors and Actuators B: Chemical, (166), 378-385.
  • Zou, H., Chen, S., Liu, Z., Lin, W. (2011). Selective CO Oxidation Over CuO-CeO2 Catalysts Doped with Transition Metal Oxides. Powder Technology, (207), 238-244.
  • Umar, A., Rahman M. M., Al-Hajry, A., Hahn Y. B. (2009). MgO Polyhedral Nanocages and Nanocrystals Based Glucose Biosensor. Electrochemistry Communications Electrochemistry Communications, (11), 278-281.
  • Kumar, K., Suresh. S., Murugesan, S., Raj, S. (2013). CuO Thin Films Made of Nanofibers for Solar Selective Absorber Applications. Solar Energy, (94), 299-304.
  • Heng, B., Qing, C., Wang, H., Sun, D., Wang, Tang, Y. (2015). Facile Synthesis of Fe-Incorporated CuO Nanoarrays with Enhanced Electrochemical Performance for Lithium Ion Full Batteries. Journal of Alloys and Compounds, (649), 899-905.
  • Bednorz, J. G., Müller, K. A. (1986). Possible High Tc Superconductivity in the Ba-La-Cu-O System. Zeitschrift für Physik B Condensed Matter, (64), 189-193.
  • Itoh, T. and Maki, K. (2007). Growth Process of CuO (1 1 1) and Cu2O (0 0 1) Thin Films on MgO(0 0 1) Substrate Under Metal-Mode Condition by Reactive DC-Magnetron Sputtering. Vacuum, (81), 1068–76.
  • Mukherjee, N., Show, B., Maji, S. K., Madhu, U., Bhar, S. K., Mitra, B. ,C., Khan, G.G., Mondal, A. (2011). CuO Nano-Whiskers: Electrodeposition, Raman Analysis, Photoluminescence Study and Photocatalytic Activity. Material Letters, (65), 3248–50.
  • Jin, C., Kim, H., An, S., Lee, C. (2012). Highly Sensitive H2S Gas Sensors Based on CuO-Coated ZnSnO3 Nanorods Synthesized by Thermal Evaporation. Ceramics International, (38), 5973–78.
  • Koh, T., O’Hara, E., Gordon, M. J. (2013). Growth of nanostructured CuO thin films via microplasma-assisted, reactive chemical vapor deposition at high pressures. Journal of Crystralline Growth, (363). 69–75.
  • Qin, H., Zhang, Z., Liu, X., Zhang, Y., Hu, J. (2010). Room-Temperature Ferromagnetism in CuO Sol–Gel Powders and Films. Journal of Magnetism and Magnetic Materials, (322), 1994–1998.
  • Bayansal, F., Çetinkara H. A., Kahraman, S., Cakmak, H. M., Güder H. S. (2012). Nano-Structured CuO Films Prepared by Simple Solution Methods: Plate-like, Needle-likeand Network-Like Architectures. Ceramics Intirnational, (38), 1859–66.
  • Halin, D. S. C., Talib, I. A., Daud, A. R., Hamid, M. A. A. (2014). Effect of Annealing Atmosphere on the Morphology of Copper Oxide Thin Films Deposited on TiO2 Substrates Prepared by Sol-Gel Process. Key Engineering Materials, (594), 113-117.
  • Bayansal, F., Taşköprü, T., Şahin, B., Çetinkara, H. A. (2014). Effect of Cobalt Doping on Nanostructured CuO Thin Films. Metallurgical and Materials Transactions A, (45), 3670-3674.
  • Saad, H. B., Ajili, M., Dabbabi, S., Kamoun, N. T. (2020). Investigation on Thickness and Annealing Effects on Physical Properties and Electrical Circuit Model of CuO Sprayed Thin Films. Superlattices and Microstructures, (142), 106508.
  • Özaslan, D., Erken, O., Güneş, M., Gümüş, C. (2020). The Effect of Annealing Temperature on the Physical Properties of Cu2O Thin Film Deposited by SILAR Method. Physica B: Physics of Condensed Matter, (580), 411922.
  • Singh, R., Yadav, L., Tripath. S. (2019). Effect of Annealing Time on The Structural and Optical Properties of n-CuO Thin films Deposited by Sol-Gel Spin Coating Technique and Its Application in n-CuO/p-Si Heterojunction Diode. Thin Solid Films, (685), 195-203.
  • Shevko, V., Lavrov, B., Serzhanov, G., Badikova, A., Uteeva, R. (2015). Chlorination of Atacamite. Industrial Technology and Engineering, (3-16), 84-91.
  • Gençyılmaz, O., Taşköprü, T. (2017). Effect of pH on the Synthesis of CuO Films by SILAR Method. Journal of Alloys and Compounds, (695), 1205-1212.
  • Zamfirescu, C., Dinçer, İ., Naterer, G. F. (2010). Thermophysical Properties of Copper Compounds in Copper–Chlorine Thermochemical Water Splitting Cycles. International Journal of Hydrogen Energy, (35), 4839-4852.
  • Pankove, J. I. (1975). Optical Processes in Semiconductors. Dover, New York.
  • Chrzanowski, J., Irwin, J.C. (1989). Raman Scattering from Cupric Oxide. Solid State Communications, (70), 11–14.
  • Anthony, J. W. (1997). Handbook of Mineralogy, Halides, Hydroxides, Oxides. Mineral Data Publishing.
  • Urbach, F. (1953). The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids. Physical Review, (92), 1324.
  • Boubaker, K. (2011). Atomic Structures Beyond the Spherical Approximation Along with PNC as Conjectured Explanations to Urbach Tailing in Neutral İsolated Ytterbium. The European Physical Journal B, (84), 235-239.
  • Ftericha, M., Nasra, F. B., Lefia, R., Toumib M., Guermazi S. (2016). Effect of Concentration of Hexamethylenetetramine in Structure, Microstructure and Optical Properties of CuO Nanoparticles Synthesized by Hydrotermal Route. Materials Science in Semiconductor Processing, (43), 114-122.
  • Mahr, H. (1962). Ultraviolet Absorption of KI Diluted in KCL Crystals. Physical Review, (125), 1510.
  • Mageshwari, K., Sathyamoorthy R. (2013). Physical Properties of Nanocrystalline CuO Thin Films Prepared by the SILAR Method. Material Science and Semiconductor Processing, (16), 337–343.
  • Akaltun, Y. (2015). Effect of Thickness on the Structural and Optical Properties of CuO Thin Films Grown by Successive Ionic Layer Adsorption and Reaction. Thin Solid Films, (594), 30-34.
  • Centi, G., Trifiro, F. (1989). Studies in Surface Science and Catalysis, Italy, 55.
  • Dhaouadi, M., Jlassi, M., Sta, I., Miled, I. B., Mousdis, G., Kompitsas, M., Dimassi, W. (2019). Influence of Pd-Doping on Structural, Morphological, Optical and Electrical Properties of Sol–Gel Derived CuO Thin Films. Surfaces and Interfaces, (17), 100352.
  • Moumen, A., Hartiti, B., Comini, E., Khalidi Z. E., Munasinghe, H. M. M., Fadili, S., Thevenin, P. (2019). Preparation and Characterization of Nanostructured CuO Thin films Using Spray Pyrolysis Technique. Superlattices and Microstructures, (127), 2-10.
  • Djebian, R., Boudjema, B., Kabir, A., Sedrati, C. (2020). Physical Characterization of CuO Thin Films Obtained by Thermal Oxidation of Vacuum Evaporated Cu. Solid State Science, (101), 106147.
  • Yuksel, M., Pennings, J. R., Bayansal, F., Yeow, John T.W. (2020). Effect of B-Doping On the Morphological, Structural and Optical Properties of SILAR Deposited CuO Films, Physica B: Physics of Condensed Matter, (599), 412578.
  • Çavuşoğu, H., Aydın, R. (2019). Complexing Agent Triethanolamine Mediated Synthesis of Nanocrystalline CuO Thin Films at Room Temperature via SILAR Technique. Superlattices and microstructures, (128), 37-37.
  • Zgaira, I. A., Omran Alkhayatta, A. H., Muhmooda, A. A., Hussain, S. K. (2019). Investigation of Structure, Optical and Photoluminescence Characteristics of Li Doped CuO Nanostructure Thin Films Synthesized by SILAR Method. Optik, (91), 48-54.
  • Daoudi, O., Qachaou, Y., Raidou, A., Nouneh, K., Lharch, M., Fahoume, M. (2019). Study of the Physical Properties of CuO Thin Films Grown by Modified SILAR Method for Solar Cells Applications. Superlattices and microstructures, (127), 93-99.
  • Bayansal, F., Şahin, B., Yüksel, M., Çetinkara H. A. (2014). Modification of Morphological, Structural and Optical Properties of SILAR-Based Growth of CuO Films on Glass-Slides by Addition of Dextrin. Journal of Alloys and Compounds, (614), 379-382.
  • Peng, W., Zhou, Y., Li, J., Liu, Y., Zhang, J., Xiang, G., Zhu, X., Li, R., Wang, H., Zhao, Y. (2021). Annealing Temperature Induced Physical Characteristics of CuO Films Grown by Magnetron Sputtering. Materials Science in Semiconductor Processing, (131), 105883.
There are 44 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Olcay Gençyılmaz 0000-0002-7410-2937

Project Number FF12035B17
Publication Date December 31, 2021
Published in Issue Year 2021

Cite

APA Gençyılmaz, O. (2021). The Nanostructured CuO Films in The Different Thermal Oxidation Mediums: Production and XRD, UV-vis-NIR, FESEM and Raman Investigations. Avrupa Bilim Ve Teknoloji Dergisi(32), 248-256. https://doi.org/10.31590/ejosat.1040788