Gıda ve Sağlık Uygulamaları İçin UV-A Işıma Altında Alternatif Bir Fotokatalizör Olarak: Doğal Melanin Nanoparçacıkları
Year 2021,
, 940 - 946, 31.12.2021
Beyza Akman
,
Buse İslam
,
Gizem Kaleli Can
,
Nermin Topaloğlu Avşar
,
Didem Şen Karaman
,
Engin Baysoy
Abstract
UV ışıması altında metalik nanoparçacıkların fotokatalitik etkisinin keşfedilmesinden bu yana, toksik olmayan nanoparçacıklara dayalı yenilikçi bir malzeme sınıfının geliştirilmesi, gıda ve sağlık uygulamalarında kullanılabilirlikleri nedeniyle büyük ilgi toplamıştır. Fotokatalizör metalik nanoparçacıklara sürdürülebilir, biyouyumlu, biyolojik olarak parçalanabilir bir alternatif olarak, bu çalışmada UV-A ışıması altında doğal melanin nanoparçacıklarının (MNP) fotokatalitik aktivitesi gram negatif bakteri suşu Escherichia coli (E. coli)’nin üzerinde gösterilmiştir. İlk olarak, nano boyutlu melanin nanoparçacıkları doğal kaynak mürekkep balığı (Sepia officinalis) mürekkebinden ekstrakte edilmiş ve UV-A ışıması altında singlet oksijen de dahil olmak üzere, reaktif oksijen türleri üretme inaktivasyon yetenekleri 1,3-difenilizobenzofuran (DPBF) ile tespit edilmiştir. UV-A içeren ve içermeyen MNP'nin antimikrobiyal etkinlikleri araştırılmıştır. Dinamik ışık saçılımı (DLS) analizi ve taramalı elektron spektroskopisi (SEM) görüntüleri, elde edilen MNP çapının sırasıyla 214 ± 0,5 nm ve 129 ± 30 nm olduğunu göstermiştir. Sadece bir dakikalık ışık uygulaması sonucunda ortamdaki DPBF'nin tamamının sönümlendiği ve MNP'nin UV-A ışıması altında ortama serbest radikaller verdiği kanıtlanmıştır. Tüm konsantrasyonlardaki deney gruplarına uygulanan bir dakikalık UV-A ışıma altındaki MNP çözeltisinin varlığı, tek başına UV-A ışıması ile kıyaslandığında belirgin seviyede hücresel inaktivasyonu arttırdığı gözlemlenmiştir. Bir dakikalık uygulama hücresel apoptozun %70 düzeyinde gerçekleşmesine neden olmuş ve tüm gruplar içerisinde en iyi sonucu vermiştir.
Supporting Institution
TÜBİTAK
Thanks
Bu çalışma TUBITAK 2209-A proje desteği tarafından fonlanmıştır. Yazarlar bu çalışmaya verdiği maddi ve manevi destek sebebiyle Sayın Mustafa Kemal Altınel’e ve EPS firmasına şükranlarını sunmaktadır. Ayrıca yazarlar, deneysel çalışmalar sırasında yardımlarından ve emeklerinden dolayı Sayın Emel Bakay’a teşekkürü borç bilirler.
References
- Jo, W. K., and Tayade, R. J. (2014). New generation energy-efficient light source for photocatalysis: LEDs for environmental applications. Industrial and Engineering Chemistry Research, 53(6), 2073–2084.
- Pal, A., Alam, S., Mittal, S., Arjaria, N., Shankar, J., and Kumar, M. et al. (2016). UVB irradiation-enhanced zinc oxide nanoparticles-induced DNA damage and cell death in mouse skin. Mutation Research/Genetic Toxicology And Environmental Mutagenesis, 807, 15-24. doi: 10.1016/j.mrgentox.2016.06.005
- Harsanyl, Z., Post, P., Brinkmann, J., Chedekel, M., and Deibel, R. (1980). Mutagenicity of melanin from human red hair. Experientia, 36(3), 291-292. doi: 10.1007/bf01952282
- Ullrich, SE. (2002). Photoimmune suppression and photocarcinogenesis. Front Biosci, 7, 684-703.
- Ziegler, A., Jonason, A., Leffellt, D., Simon, J., Sharma, H., & Kimmelman, J. … Brash, D. (1994). Sunburn and p53 in the onset of skin cancer. Nature, 372(6508), 773-776. doi: 10.1038/372773a0
- Nghiem, D., Kazimi, N., Clydesdale, G., Ananthaswamy, H., Kripke, M., and Ullrich, S. (2001). Ultraviolet A Radiation Suppresses an Established Immune Response: Implications for Sunscreen Design. Journal Of Investigative Dermatology, 117(5), 1193-1199. doi: 10.1046/j.0022-202x.2001.01503.x
- Yoshikawa, T., Rae, V., Bruins-Slot, W., van den Berg, J., Taylor, J., and Streilein, J. (1990). Susceptibility to Effects of UVB Radiation on Induction of Contact Hypersensitivity as a Risk Factor for Skin Cancer in Humans. Journal Of Investigative Dermatology, 95(5), 530-536. doi: 10.1111/1523-1747.ep12504877
- Elmets, C., Bergstresser, P., Tigelaar, R., Wood, P., and Streilein, J. (1983). Analysis of the mechanism of unresponsiveness produced by haptens painted on skin exposed to low dose ultraviolet radiation. Journal Of Experimental Medicine, 158(3), 781-794. doi: 10.1084/jem.158.3.781
- Brenner, M., and Hearing, V. (2007). The Protective Role of Melanin Against UV Damage in Human Skin†. Photochemistry And Photobiology, 84(3), 539-549. doi: 10.1111/j.1751-1097.2007.00226.x
- Yang, Q., and Ma, Y. (2014) Irradiation-Enhanced Cytotoxicity of Zinc Oxide Nanoparticles. Int J Toxicol, 33(3), 187-203. doi: 10.1177/1091581814529168. Epub 2014 Apr 3. PMID: 24700570.
- Google Patents. (2021). Retrieved 29 November 2021, from https://patents.google.com/patent/US6902397?oq=UVA+desenfectio
- Rastkari, N., Eslami, A., Nasseri, S., Piroti, E., Asadi, A. (2017). Optimizing Parameters on Nanophotocatalytic Degradation of Ibuprofen Using UVC/ZnO Processes by Response Surface Methodology. Polish Journal of Environmental Studies, 26(2), 785-794. https://doi.org/10.15244/pjoes/64931
- Kaplan, A., Akalın, G. Ç., Kutlu, H. M. (2017). Titanyum Dioksitin A549 Hücreleri Üzerindeki Apoptotik Etkileri. Anadolu Üniversitesi Bilim ve Teknoloji Dergisi: C-Yaşam Bilimleri ve Biyoteknoloji, 6(1), 38 - 54.
- Osmond, M. J., and Mccall, M. J. (2010). Zinc oxide nanoparticles in modern sunscreens: An analysis of potential exposure and hazard. Nanotoxicology, 4(1), 15-41.
- Geng, J., Tang, W., Wan, X., Zhou, Q., Wang, X., Shen, P. … Lei, T. C. (2008). Photoprotection of bacterial-derived melanin against ultraviolet A–induced cell death and its potential application as an active sunscreen. Journal Of The European Academy Of Dermatology And Venereology, 22(7), 852-858. doi: 10.1111/j.1468-3083.2007.02574.x
- Prota, G. (1995). The chemistry of melanins and melanogenesis. Fortschritte der Chemie organischer Naturstoffe = Progress in the chemistry of organic natural products. Progres dans la chimie des substances organiques naturelles, 64, 93–148. https://doi.org/10.1007/978-3-7091-9337-2_2.
- Takeuchi, S., Zhang, W., Wakamatsu, K., Ito, S., Hearing, V., Kraemer, K., & Brash, D. (2004). Melanin acts as a potent UVB photosensitizer to cause an atypical mode of cell death in murine skin. Proceedings Of The National Academy Of Sciences, 101(42), 15076-15081. doi: 10.1073/pnas.0403994101
- Kalyanaraman, B., Felix, C., & Sealy, R. (1982). Photoionization of Melanin Precursors: An Elcectron Spin Resonance İnvestigation Using the Spin Trap 5,5-Dimethyl-1-Pyrroline-1-Oxide (DMPO). Photochemistry And Photobiology, 36(1), 5-12. doi: 10.1111/j.1751-1097.1982.tb04332.x
- Caldas, M., Santos, A., Veiga, F., Rebelo, R., Reis, R., & Correlo, V. (2020). Melanin nanoparticles as a promising tool for biomedical applications – a review. Acta Biomaterialia, 105, 26-43. doi: 10.1016/j.actbio.2020.01.044
- Mbonyiryivuze, A., Omollo, I., Ngom, B.D., Mwakikunga, B.W., Dhlamini, S.M., Park, E., … Maaza, M. (2015). Natural Dye Sensitizer for Grӓtzel Cells: Sepia Melanin. Physics and Materials Chemistry, 3(1), 1-6.
- Akman, B., Islam B., Kaleli-Can, G, Baysoy, E., Topaloglu N., Karaman, D.S. (2021) "The Protective Role of Natural Melanin Nanoparticles Under UVC Exposure," Medical Technologies Congress (TIPTEKNO), pp. 1-4. doi: 10.1109/TIPTEKNO53239.2021.9633009.
- Felix, C.C., Hyde, J.S., Sarna, T.J., and Sealy, R.C. (1978). Melanin photoreactions in aerated media: electron spin resonance evidence for production of superoxide and hydrogen peroxide. Biochemical and biophysical research communications, 84(2), 335-41.
- Kvam, E., and Tyrrell, R. (1999). The Role of Melanin in the Induction of Oxidative DNA Base Damage by Ultraviolet A Irradiation of DNA or Melanoma Cells. Journal Of Investigative Dermatology, 113(2), 209-213. doi: 10.1046/j.1523-1747.1999.00653.x
- Marrot, L., Belaidi, J. P., Meunier, J. R., Perez, P., & Agapakis-Causse, C. (1999). The human melanocyte as a particular target for UVA radiation and an endpoint for photoprotection assessment. Photochemistry and photobiology, 69(6), 686–693.
- Kipp, C., and Young, A. R. (1999). The soluble eumelanin precursor 5,6-dihydroxyindole-2-carboxylic acid enhances oxidative damage in human keratinocyte DNA after UVA irradiation. Photochemistry and photobiology, 70(2), 191–198.
- Kvam, E., and Dahle, J. (2004). Melanin Synthesis may Sensitize Melanocytes to Oxidative DNA Damage by Ultraviolet A Radiation and Protect Melanocytes from Direct DNA Damage by Ultraviolet B Radiation. Pigment Cell Research, 17(5), 549-550. doi: 10.1111/j.1600-0749.2004.00168.x
- De Trizio, A., Srisuk, P., Costa, R. R., Fraga, A. G., Modena, T., Genta, I., ... Reis, R. L. (2017). Natural based eumelanin nanoparticles functionalization and preliminary evaluation as carrier for gentamicin. Reactive and Functional Polymers, 114, 38-48.
- Dezidério, S. N., Brunello, C. A., Da Silva, M. I. N., Cotta, M. A., and Graeff, C. F. O. (2004). Thin films of synthetic melanin. Journal of non-crystalline solids, 338, 634-638.
As an Alternative Photocatalyst Under UV-A Irradiation for Food and Health Applications: Natural Melanin Nanoparticles
Year 2021,
, 940 - 946, 31.12.2021
Beyza Akman
,
Buse İslam
,
Gizem Kaleli Can
,
Nermin Topaloğlu Avşar
,
Didem Şen Karaman
,
Engin Baysoy
Abstract
Since finding of photocatalytic effect of metallic nanoparticles under UV irradiation, an innovative class of materials based on non-toxic nanoparticles have gathered enormous interest owing to their usability in food and health application. As a sustainable, biocompatible, biodegradable alternative to photocatalyst metallic nanoparticle, we demonstrated the photocatalytic activity of natural melanin nanoparticles under UV-A irridation for gram-negative bacterial strain, Escherichia coli (E. coli). Initially, nanosized melanin nanoparticles were extracted from natural source, cuttlefish (Sepia officinalis) ink and their inactivation capability of generating reactive oxygen species including singlet oxygen under UV-A irradiation were detected with 1,3-diphenylisobenzofuran (DPBF). The antimicrobial efficacies of MNP with and without UV-A were investigated. Dynamic light scattering (DLS) analysis and scanning electron spectroscopy (SEM) images showed that the diameter of MNP were found 214 ± 0.5 nm and 129 ± 30 nm, respectively. As a result of only one minute of light application, all of the DPBF in the environment was quenched, and it was proven that MNP gave free radicals to the environment under UV-A irradiation. The presence of MNP solution under 1-minute UV-A irradiation applied to the experimental groups at all concentrations significantly increased cellular inactivation compared to UV-A irradiation alone and the 200 µg/ml of MNP solution exposed to UV-A irradiation for 1-minute caused the cellular apoptosis to occur at the level of 70%, giving the best result in all groups.
References
- Jo, W. K., and Tayade, R. J. (2014). New generation energy-efficient light source for photocatalysis: LEDs for environmental applications. Industrial and Engineering Chemistry Research, 53(6), 2073–2084.
- Pal, A., Alam, S., Mittal, S., Arjaria, N., Shankar, J., and Kumar, M. et al. (2016). UVB irradiation-enhanced zinc oxide nanoparticles-induced DNA damage and cell death in mouse skin. Mutation Research/Genetic Toxicology And Environmental Mutagenesis, 807, 15-24. doi: 10.1016/j.mrgentox.2016.06.005
- Harsanyl, Z., Post, P., Brinkmann, J., Chedekel, M., and Deibel, R. (1980). Mutagenicity of melanin from human red hair. Experientia, 36(3), 291-292. doi: 10.1007/bf01952282
- Ullrich, SE. (2002). Photoimmune suppression and photocarcinogenesis. Front Biosci, 7, 684-703.
- Ziegler, A., Jonason, A., Leffellt, D., Simon, J., Sharma, H., & Kimmelman, J. … Brash, D. (1994). Sunburn and p53 in the onset of skin cancer. Nature, 372(6508), 773-776. doi: 10.1038/372773a0
- Nghiem, D., Kazimi, N., Clydesdale, G., Ananthaswamy, H., Kripke, M., and Ullrich, S. (2001). Ultraviolet A Radiation Suppresses an Established Immune Response: Implications for Sunscreen Design. Journal Of Investigative Dermatology, 117(5), 1193-1199. doi: 10.1046/j.0022-202x.2001.01503.x
- Yoshikawa, T., Rae, V., Bruins-Slot, W., van den Berg, J., Taylor, J., and Streilein, J. (1990). Susceptibility to Effects of UVB Radiation on Induction of Contact Hypersensitivity as a Risk Factor for Skin Cancer in Humans. Journal Of Investigative Dermatology, 95(5), 530-536. doi: 10.1111/1523-1747.ep12504877
- Elmets, C., Bergstresser, P., Tigelaar, R., Wood, P., and Streilein, J. (1983). Analysis of the mechanism of unresponsiveness produced by haptens painted on skin exposed to low dose ultraviolet radiation. Journal Of Experimental Medicine, 158(3), 781-794. doi: 10.1084/jem.158.3.781
- Brenner, M., and Hearing, V. (2007). The Protective Role of Melanin Against UV Damage in Human Skin†. Photochemistry And Photobiology, 84(3), 539-549. doi: 10.1111/j.1751-1097.2007.00226.x
- Yang, Q., and Ma, Y. (2014) Irradiation-Enhanced Cytotoxicity of Zinc Oxide Nanoparticles. Int J Toxicol, 33(3), 187-203. doi: 10.1177/1091581814529168. Epub 2014 Apr 3. PMID: 24700570.
- Google Patents. (2021). Retrieved 29 November 2021, from https://patents.google.com/patent/US6902397?oq=UVA+desenfectio
- Rastkari, N., Eslami, A., Nasseri, S., Piroti, E., Asadi, A. (2017). Optimizing Parameters on Nanophotocatalytic Degradation of Ibuprofen Using UVC/ZnO Processes by Response Surface Methodology. Polish Journal of Environmental Studies, 26(2), 785-794. https://doi.org/10.15244/pjoes/64931
- Kaplan, A., Akalın, G. Ç., Kutlu, H. M. (2017). Titanyum Dioksitin A549 Hücreleri Üzerindeki Apoptotik Etkileri. Anadolu Üniversitesi Bilim ve Teknoloji Dergisi: C-Yaşam Bilimleri ve Biyoteknoloji, 6(1), 38 - 54.
- Osmond, M. J., and Mccall, M. J. (2010). Zinc oxide nanoparticles in modern sunscreens: An analysis of potential exposure and hazard. Nanotoxicology, 4(1), 15-41.
- Geng, J., Tang, W., Wan, X., Zhou, Q., Wang, X., Shen, P. … Lei, T. C. (2008). Photoprotection of bacterial-derived melanin against ultraviolet A–induced cell death and its potential application as an active sunscreen. Journal Of The European Academy Of Dermatology And Venereology, 22(7), 852-858. doi: 10.1111/j.1468-3083.2007.02574.x
- Prota, G. (1995). The chemistry of melanins and melanogenesis. Fortschritte der Chemie organischer Naturstoffe = Progress in the chemistry of organic natural products. Progres dans la chimie des substances organiques naturelles, 64, 93–148. https://doi.org/10.1007/978-3-7091-9337-2_2.
- Takeuchi, S., Zhang, W., Wakamatsu, K., Ito, S., Hearing, V., Kraemer, K., & Brash, D. (2004). Melanin acts as a potent UVB photosensitizer to cause an atypical mode of cell death in murine skin. Proceedings Of The National Academy Of Sciences, 101(42), 15076-15081. doi: 10.1073/pnas.0403994101
- Kalyanaraman, B., Felix, C., & Sealy, R. (1982). Photoionization of Melanin Precursors: An Elcectron Spin Resonance İnvestigation Using the Spin Trap 5,5-Dimethyl-1-Pyrroline-1-Oxide (DMPO). Photochemistry And Photobiology, 36(1), 5-12. doi: 10.1111/j.1751-1097.1982.tb04332.x
- Caldas, M., Santos, A., Veiga, F., Rebelo, R., Reis, R., & Correlo, V. (2020). Melanin nanoparticles as a promising tool for biomedical applications – a review. Acta Biomaterialia, 105, 26-43. doi: 10.1016/j.actbio.2020.01.044
- Mbonyiryivuze, A., Omollo, I., Ngom, B.D., Mwakikunga, B.W., Dhlamini, S.M., Park, E., … Maaza, M. (2015). Natural Dye Sensitizer for Grӓtzel Cells: Sepia Melanin. Physics and Materials Chemistry, 3(1), 1-6.
- Akman, B., Islam B., Kaleli-Can, G, Baysoy, E., Topaloglu N., Karaman, D.S. (2021) "The Protective Role of Natural Melanin Nanoparticles Under UVC Exposure," Medical Technologies Congress (TIPTEKNO), pp. 1-4. doi: 10.1109/TIPTEKNO53239.2021.9633009.
- Felix, C.C., Hyde, J.S., Sarna, T.J., and Sealy, R.C. (1978). Melanin photoreactions in aerated media: electron spin resonance evidence for production of superoxide and hydrogen peroxide. Biochemical and biophysical research communications, 84(2), 335-41.
- Kvam, E., and Tyrrell, R. (1999). The Role of Melanin in the Induction of Oxidative DNA Base Damage by Ultraviolet A Irradiation of DNA or Melanoma Cells. Journal Of Investigative Dermatology, 113(2), 209-213. doi: 10.1046/j.1523-1747.1999.00653.x
- Marrot, L., Belaidi, J. P., Meunier, J. R., Perez, P., & Agapakis-Causse, C. (1999). The human melanocyte as a particular target for UVA radiation and an endpoint for photoprotection assessment. Photochemistry and photobiology, 69(6), 686–693.
- Kipp, C., and Young, A. R. (1999). The soluble eumelanin precursor 5,6-dihydroxyindole-2-carboxylic acid enhances oxidative damage in human keratinocyte DNA after UVA irradiation. Photochemistry and photobiology, 70(2), 191–198.
- Kvam, E., and Dahle, J. (2004). Melanin Synthesis may Sensitize Melanocytes to Oxidative DNA Damage by Ultraviolet A Radiation and Protect Melanocytes from Direct DNA Damage by Ultraviolet B Radiation. Pigment Cell Research, 17(5), 549-550. doi: 10.1111/j.1600-0749.2004.00168.x
- De Trizio, A., Srisuk, P., Costa, R. R., Fraga, A. G., Modena, T., Genta, I., ... Reis, R. L. (2017). Natural based eumelanin nanoparticles functionalization and preliminary evaluation as carrier for gentamicin. Reactive and Functional Polymers, 114, 38-48.
- Dezidério, S. N., Brunello, C. A., Da Silva, M. I. N., Cotta, M. A., and Graeff, C. F. O. (2004). Thin films of synthetic melanin. Journal of non-crystalline solids, 338, 634-638.