Review
BibTex RIS Cite

Elektrikli Araçların Hızlı Şarjı için Üç Fazlı AA-DA Güç Faktörü Düzeltme Dönüştürücülerinin İncelenmesi

Year 2021, , 663 - 669, 31.12.2021
https://doi.org/10.31590/ejosat.1041081

Abstract

Hızlı DA şarj için elektrikli araç şarj istasyonu, araç dışında AA-DA dönüşümü gerçekleştirir. Son yıllarda, üç fazlı AA-DA güç faktörü düzelten (GFD) dönüştürücüler hızlı şarj cihazı ile birlikte ele alınmaktadır. Bu dönüştürücüler, tek yönlü ve çift yönlü güç akışı yapısı kullanılarak geliştirilmiştir. Bu çalışmada, çift yönlü güç akışı sağlayan üç fazlı AA-DA GFD dönüştürücü topolojileri performans açısından değerlendirilmiştir. Amaç, elektrikli araç hızlı şarjı için en yeni üç fazlı çift yönlü çok seviyeli AA-DA GFD dönüştürücü teknolojisini sunmaktır. Bu makale, elektrikli araçlar için hızlı şarj altyapısıyla ilgilenen araştırmacılar için kapsamlı ve pratik bir inceleme sunmaktadır.

References

  • Akter, P., Mekhilef, S., Tan, N. M. L., & Akagi, H. (2015). Model predictive control of bidirectional AC-DC converter for energy storage system. Journal of Electrical Engineering and Technology, 10(1), 165–175. doi: 10.5370/JEET.2015.10.1.165
  • Alves, W. C., Morais, L. M. F., & Cortizo, P. C. (2018). Design of an highly efficient AC-DC-AC three-phase converter using sic for ups applications. Electronics (Switzerland), 7(12), 425. doi: 10.3390/electronics7120425
  • Balasubramanian, R., & Palani, S. (2016). Simulation and Performance Evaluation of Shunt Hybrid Power Filter for Power Quality Improvement Using PQ Theory. International Journal of Electrical and Computer Engineering (IJECE), 6(6), 2603–2609. doi: 10.11591/ijece.v6i6.12011
  • Bhat, A. H., & Agarwal, P. (2008). Three-phase, power quality improvement AC/DCconverters. Electric Power Systems Research, 78(2), 276–289. doi: 10.1016/j.epsr.2007.02.002
  • Channegowda, J., Pathipati, V. K., & Williamson, S. S. (2015). Comprehensive review and comparison of DC fast charging converter topologies: Improving electric vehicle plug-to-wheels efficiency. IEEE International Symposium on Industrial Electronics, 2015-September, 263–268. doi: 10.1109/ISIE.2015.7281479
  • Chen, H., & Zhao, H. (2016). Review on pulse-width modulation strategies for common-mode voltage reduction in three-phase voltage-source inverters. IET Power Electronics, 9(14), 2611–2620. doi: 10.1049/iet-pel.2015.1019
  • Chlebis, P., Tvrdon, M., Havel, A., & Baresova, K. (2014). Comparison of Standard and Fast Charging Methods for Electric Vehicles. Advances in Electrical and Electronic Engineering, 12(2), 111–116. doi: 10.15598/AEEE.V12I2.975
  • Cui, D., & Ge, Q. (2018). A Novel Hybrid Voltage Balance Method for Five-Level Diode-Clamped Converters. IEEE Transactions on Industrial Electronics, 65(8), 6020–6031. doi: 10.1109/TIE.2017.2784399
  • Electromagnetic compatibility (EMC)-Part 3-2: Limits-Limits for harmonic current emissions (equipment input current ≤ 16 A per phase). (2014).
  • Elrajoubi, A. M., Ang, S. S., & George, K. (2019). Design and analysis of a new GaN-based AC/DC converter for battery charging application. IEEE Transactions on Industry Applications, 55(4), 4044–4052. doi: 10.1109/TIA.2019.2915687
  • Garg, P., Essakiappan, S., Krishnamoorthy, H. S., & Enjeti, P. N. (2015). A fault-tolerant three-phase adjustable speed drive topology with active common-mode voltage suppression. IEEE Transactions on Power Electronics, 30(5), 2828–2839. doi: 10.1109/TPEL.2014.2361905
  • Habib, S., Khan, M. M., Abbas, F., & Tang, H. (2018). Assessment of electric vehicles concerning impacts, charging infrastructure with unidirectional and bidirectional chargers, and power flow comparisons. In International Journal of Energy Research (Vol. 42, Issue 11, pp. 3416–3441). John Wiley and Sons Ltd. doi: 10.1002/er.4033
  • He, L., & Cheng, C. (2016). A Flying-Capacitor-Clamped Five-Level Inverter Based on Bridge Modular Switched-Capacitor Topology. IEEE Transactions on Industrial Electronics, 63(12), 7814–7822. doi: 10.1109/TIE.2016.2607155
  • IEEE 597-1983 - IEEE Standard Practices and Requirements for General Purpose Thyristor DC Drives. (n.d.). In IEEE. Retrieved from https://standards.ieee.org/standard/597-1983.html
  • IEEE Guide for Specification of High-Voltage Direct -Current Systems Part I - Steady-State Performance. (1987). Retrieved from https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=26485
  • Justus Rabi, B., & V, B. K. (2015). A Novel Power Factor Correction Rectifier for Enhancing Power Quality. International Journal of Power Electronics and Drive System (IJPEDS), 6(4), 772–780.
  • K. T. Chau. (2016). Energy Systems for Electric and Hybrid Vehicles. In K. T. Chau (Ed.), Energy Systems for Electric and Hybrid Vehicles. Institution of Engineering and Technology. doi: 10.1049/PBTR002E
  • Kamaga, M., Sung, K., Sato, Y., & Ohashi, H. (2011). An investigation of flying capacitor converter for circuit integration. IEEJ Transactions on Electrical and Electronic Engineering, 6(4), 376–383. doi: 10.1002/tee.20671
  • Kavianipour, M., Fakhrmoosavi, F., Singh, H., Ghamami, M., Zockaie, A., Ouyang, Y., & Jackson, R. (2021). Electric vehicle fast charging infrastructure planning in urban networks considering daily travel and charging behavior. Transportation Research Part D: Transport and Environment, 93, 102769. doi: 10.1016/j.trd.2021.102769
  • Khaligh, A., & Dusmez, S. (2012). Comprehensive topological analysis of conductive and inductive charging solutions for plug-in electric vehicles. IEEE Transactions on Vehicular Technology, 61(8), 3475–3489. doi: 10.1109/TVT.2012.2213104
  • Kushwaha, R., & Singh, B. (2020a). Design and Development of Modified BL Luo Converter for PQ Improvement in EV Charger. IEEE Transactions on Industry Applications, 56(4), 3976–3984. doi: 10.1109/TIA.2020.2988197
  • Kushwaha, R., & Singh, B. (2020b). Interleaved Landsman Converter Fed EV Battery Charger with Power Factor Correction. IEEE Transactions on Industry Applications, 56(4), 4179–4192. doi: 10.1109/TIA.2020.2988174
  • Lee, J. H., Moon, J. S., Lee, Y. S., Kim, Y. R., & Won, C. Y. (2011). Fast charging technique for EV battery charger using three-phase AC-DC boost converter. IECON Proceedings (Industrial Electronics Conference), 4577–4582. doi: 10.1109/IECON.2011.6120064
  • Lee, J. Y., Heo, K. W., Kim, K. T., & Jung, J. H. (2020). Analysis and design of three-phase buck rectifier employing UPS to supply high reliable dc power. Energies, 13(7), 1704. doi: 10.3390/en13071704
  • Liu, J., Xu, W., Chan, K. W., Liu, M., Zhang, X., & Chan, N. H. L. (2020). A Three-Phase Single-Stage AC-DC Wireless-Power-Transfer Converter with Power Factor Correction and Bus Voltage Control. IEEE Journal of Emerging and Selected Topics in Power Electronics, 8(2), 1782–1800. doi: 10.1109/JESTPE.2019.2916258
  • Menon, M., & Jacob, B. (2021). A Simplified Space Vector Pulse Density Modulation Scheme without Coordinate Transformation and Sector Identification. IEEE Transactions on Industrial Electronics, 1–1. doi: 10.1109/TIE.2021.3080201
  • Metwly, M. Y., Abdel-Majeed, M. S., Abdel-Khalik, A. S., Hamdy, R. A., Hamad, M. S., & Ahmed, S. (2020). A Review of Integrated On-Board EV Battery Chargers: Advanced Topologies, Recent Developments and Optimal Selection of FSCW Slot/Pole Combination. IEEE Access, 8, 85216–85242. doi: 10.1109/ACCESS.2020.2992741
  • Monteiro, V., Afonso, J., Sousa, T., & Afonso, J. L. (2020). The role of off-board EV battery chargers in smart homes and smart grids: Operation with renewables and energy storage systems. Electric Vehicles in Energy Systems: Modelling, Integration, Analysis, and Optimization, 47–72. doi: 10.1007/978-3-030-34448-1_3
  • Monteiro, V., Ferreira, J. C., Nogueiras Melendez, A. A., Couto, C., & Afonso, J. L. (2018). Experimental Validation of a Novel Architecture Based on a Dual-Stage Converter for Off-Board Fast Battery Chargers of Electric Vehicles. IEEE Transactions on Vehicular Technology, 67(2), 1000–1011. doi: 10.1109/TVT.2017.2755545
  • Nayak, S. K. (2019, December 1). Electric Vehicle Charging Topologies, Control Schemes for Smart City Application. 2019 IEEE Transportation Electrification Conference, ITEC-India 2019. doi: 10.1109/ITEC-India48457.2019.ITECIndia2019-229
  • Prajapati, D., Ravindran, V., Sutaria, J., Patel, P., & Professor, A. (2014). A Comparative Study of Three Phase 2-Level VSI with 3-Level and 5-Level Diode Clamped Multilevel Inverter. International Journal of Emerging Technology and Advanced Engineering , 4(4), 713. Retrieved from www.ijetae.com
  • Praneeth, A. V. J. S., & Williamson, S. S. (2018). A Review of Front End AC-DC Topologies in Universal Battery Charger for Electric Transportation. 2018 IEEE Transportation and Electrification Conference and Expo, ITEC 2018, 916–921. doi: 10.1109/ITEC.2018.8450186
  • Prayag, A., & Bodkhe, S. (2017, February 13). A comparative analysis of classical three phase multilevel (five level) inverter topologies. 1st IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems, ICPEICES 2016. doi: 10.1109/ICPEICES.2016.7853567
  • Sah, S., & Rizvi, T. (2021). Power Quality Improvement using Shunt Active Filters with Multilevel Inverter. International Journal for Research Trends and Innovation , 6(4). Retrieved from www.ijrti.org
  • Saleeb, H., Sayed, K., Kassem, A., & Mostafa, R. (2019). Power management strategy for battery electric vehicles. IET Electrical Systems in Transportation, 9(2), 65–74. doi: 10.1049/iet-est.2018.5026
  • Sam, C. A., & Jegathesan, V. (2021). Bidirectional integrated on-board chargers for electric vehicles—a review. Sadhana - Academy Proceedings in Engineering Sciences, 46(1), 1–14. doi: 10.1007/s12046-020-01556-2
  • Sandoval, J. J., Essakiappan, S., & Enjeti, P. (2015). A bidirectional series resonant matrix converter topology for electric vehicle DC fast charging. Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2015-May(May), 3109–3116. doi: 10.1109/APEC.2015.7104795
  • Sayed, K., & Gabbar, H. (2016). Electric Vehicle to Power Grid Integration Using Three-Phase Three-Level AC/DC Converter and PI-Fuzzy Controller. Energies, 9(7), 532. doi: 10.3390/en9070532
  • Shaikh, O., Siddiqui, S. ul I., Khan, A., Riaz, S., & Tarique, S. (2021). Three Phase Transformer Based Cascaded H-Bridge Multilevel Inverter. 2021 International Conference on Emerging Power Technologies (ICEPT), 1–5. doi: 10.1109/ICEPT51706.2021.9435531
  • Sharma, G., Sood, V. K., Alam, M. S., & Shariff, S. M. (2020). Comparison of common DC and AC bus architectures for EV fast charging stations and impact on power quality. ETransportation, 5, 100066. doi: 10.1016/j.etran.2020.100066
  • Singh, B., Singh, B. N., Chandra, A., Al-Haddad, K., Pandey, A., & Kothari, D. P. (2004). A review of three-phase improved power quality AC-DC converters. IEEE Transactions on Industrial Electronics, 51(3), 641–660. doi: 10.1109/TIE.2004.825341
  • Singh, B., Singh, S., Chandra, A., & Al-Haddad, K. (2011). Comprehensive study of single-phase AC-DC power factor corrected converters with high-frequency isolation. IEEE Transactions on Industrial Informatics, 7(4), 540–556. doi: 10.1109/TII.2011.2166798
  • Soeiro, T., Friedli, T., & Kolar, J. W. (2012). Three-phase high power factor mains interface concepts for electric vehicle battery charging systems. Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2603–2610. doi: 10.1109/APEC.2012.6166190
  • Sreedhar, R., Karunanithi, K., Chandrasekar, P., & Teja, R. B. (2021). Nearest Space-Vector Control Strategy for High-Resolution Multilevel Inverters. 6th International Conference for Convergence in Technology (I2CT), 1–6. doi: 10.1109/i2ct51068.2021.9417882
  • Tan, K. M., Ramachandaramurthy, V. K., & Yong, J. Y. (2016). Three-phase bidirectional electric vehicle charger for vehicle to grid operation and grid voltage regulation. 2016 IEEE Transportation Electrification Conference and Expo, Asia-Pacific, ITEC Asia-Pacific 2016, 7–12. doi: 10.1109/ITEC-AP.2016.7512913
  • Turksoy, O., Yilmaz, U., & Teke, A. (2018). Overview of Battery Charger Topologies in Plug-In Electric and Hybrid Electric Vehicles. 16th International Conference on Clean Energy (ICCE-2018), 1–8. Retrieved from https://www.researchgate.net/publication/327422059
  • Verma, A., & Singh, B. (2019). Multi-Objective Reconfigurable Three-Phase Off-Board Charger for EV. IEEE Transactions on Industry Applications, 55(4), 4192–4203. doi: 10.1109/TIA.2019.2908950
  • Vivek, G., Nair, M. D., Biswas, J., & Barai, M. (2021). Design space exploration of optimized hybrid SVPWM techniques based on spatial region for three level VSI. Electrical Engineering, 1, 3. doi: 10.1007/s00202-021-01245-1
  • Wang, Q., Deng, F., Liu, C., Heng, Q., & Chen, Z. (2019). Thyristor-based modular multilevel converter-HVDC systems with current interruption capability. IET Power Electronics, 12(12), 3056–3067. doi: 10.1049/iet-pel.2019.0213
  • Yacoubi, L., Al-Haddad, K., Fnaiech, F., & Dessaint, L. A. (2005). A DSP-based implementation of a new nonlinear control for a three-phase neutral point clamped boost rectifier prototype. IEEE Transactions on Industrial Electronics, 52(1), 197–205. doi: 10.1109/TIE.2004.837913
  • Yaramasu, V., Dekka, A., & Kouro, S. (2021). Multilevel converters for renewable energy systems. In Multilevel Inverters (pp. 155–184). Elsevier. doi: 10.1016/b978-0-323-90217-5.00007-1
  • Yildirim, D., Ozturk, S., Cadirci, I., & Ermiş, M. (2020). All SiC PWM rectifier-based off-board ultrafast charger for heavy electric vehicles. IET Power Electronics, 13(3), 483–494. doi: 10.1049/iet-pel.2019.0583
  • Yilmaz, M., & Krein, P. T. (2013). Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles. In IEEE Transactions on Power Electronics (Vol. 28, Issue 5, pp. 2151–2169). doi: 10.1109/TPEL.2012.2212917
  • Yuan, J., Dorn-Gomba, L., Callegaro, A. D., Reimers, J., & Emadi, A. (2021). A review of bidirectional on-board chargers for electric vehicles. In IEEE Access (Vol. 9, pp. 51501–51518). Institute of Electrical and Electronics Engineers Inc. doi: 10.1109/ACCESS.2021.3069448
  • Zhang, Z., Xu, H., Shi, L., Li, D., & Han, Y. (2012). A unit power factor DC fast charger for electric vehicle charging station. Conference Proceedings - 2012 IEEE 7th International Power Electronics and Motion Control Conference - ECCE Asia, IPEMC 2012, 1, 411–415. doi: 10.1109/IPEMC.2012.6258896

A Review of Three Phase AC-DC Power Factor Correction Converters for Electric Vehicle Fast Charging

Year 2021, , 663 - 669, 31.12.2021
https://doi.org/10.31590/ejosat.1041081

Abstract

Electric vehicle charging station for fast DC charging performs AC-DC conversion at off-board. In recent years, three-phase AC-DC power factor correction (PFC) converters are dealt with fast charger. These converters are developed using unidirectional and bidirectional power flow structure. In this study, three-phase AC-DC PFC converter topologies, providing bidirectional power flow, are evaluated in terms of performance. The aim is to present the latest technology of bidirectional multilevel AC-DC PFC converters for EV fast charging. This paper provides a comprehensive and practical review for researchers interested in fast charging infrastructure for electric vehicles.

References

  • Akter, P., Mekhilef, S., Tan, N. M. L., & Akagi, H. (2015). Model predictive control of bidirectional AC-DC converter for energy storage system. Journal of Electrical Engineering and Technology, 10(1), 165–175. doi: 10.5370/JEET.2015.10.1.165
  • Alves, W. C., Morais, L. M. F., & Cortizo, P. C. (2018). Design of an highly efficient AC-DC-AC three-phase converter using sic for ups applications. Electronics (Switzerland), 7(12), 425. doi: 10.3390/electronics7120425
  • Balasubramanian, R., & Palani, S. (2016). Simulation and Performance Evaluation of Shunt Hybrid Power Filter for Power Quality Improvement Using PQ Theory. International Journal of Electrical and Computer Engineering (IJECE), 6(6), 2603–2609. doi: 10.11591/ijece.v6i6.12011
  • Bhat, A. H., & Agarwal, P. (2008). Three-phase, power quality improvement AC/DCconverters. Electric Power Systems Research, 78(2), 276–289. doi: 10.1016/j.epsr.2007.02.002
  • Channegowda, J., Pathipati, V. K., & Williamson, S. S. (2015). Comprehensive review and comparison of DC fast charging converter topologies: Improving electric vehicle plug-to-wheels efficiency. IEEE International Symposium on Industrial Electronics, 2015-September, 263–268. doi: 10.1109/ISIE.2015.7281479
  • Chen, H., & Zhao, H. (2016). Review on pulse-width modulation strategies for common-mode voltage reduction in three-phase voltage-source inverters. IET Power Electronics, 9(14), 2611–2620. doi: 10.1049/iet-pel.2015.1019
  • Chlebis, P., Tvrdon, M., Havel, A., & Baresova, K. (2014). Comparison of Standard and Fast Charging Methods for Electric Vehicles. Advances in Electrical and Electronic Engineering, 12(2), 111–116. doi: 10.15598/AEEE.V12I2.975
  • Cui, D., & Ge, Q. (2018). A Novel Hybrid Voltage Balance Method for Five-Level Diode-Clamped Converters. IEEE Transactions on Industrial Electronics, 65(8), 6020–6031. doi: 10.1109/TIE.2017.2784399
  • Electromagnetic compatibility (EMC)-Part 3-2: Limits-Limits for harmonic current emissions (equipment input current ≤ 16 A per phase). (2014).
  • Elrajoubi, A. M., Ang, S. S., & George, K. (2019). Design and analysis of a new GaN-based AC/DC converter for battery charging application. IEEE Transactions on Industry Applications, 55(4), 4044–4052. doi: 10.1109/TIA.2019.2915687
  • Garg, P., Essakiappan, S., Krishnamoorthy, H. S., & Enjeti, P. N. (2015). A fault-tolerant three-phase adjustable speed drive topology with active common-mode voltage suppression. IEEE Transactions on Power Electronics, 30(5), 2828–2839. doi: 10.1109/TPEL.2014.2361905
  • Habib, S., Khan, M. M., Abbas, F., & Tang, H. (2018). Assessment of electric vehicles concerning impacts, charging infrastructure with unidirectional and bidirectional chargers, and power flow comparisons. In International Journal of Energy Research (Vol. 42, Issue 11, pp. 3416–3441). John Wiley and Sons Ltd. doi: 10.1002/er.4033
  • He, L., & Cheng, C. (2016). A Flying-Capacitor-Clamped Five-Level Inverter Based on Bridge Modular Switched-Capacitor Topology. IEEE Transactions on Industrial Electronics, 63(12), 7814–7822. doi: 10.1109/TIE.2016.2607155
  • IEEE 597-1983 - IEEE Standard Practices and Requirements for General Purpose Thyristor DC Drives. (n.d.). In IEEE. Retrieved from https://standards.ieee.org/standard/597-1983.html
  • IEEE Guide for Specification of High-Voltage Direct -Current Systems Part I - Steady-State Performance. (1987). Retrieved from https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=26485
  • Justus Rabi, B., & V, B. K. (2015). A Novel Power Factor Correction Rectifier for Enhancing Power Quality. International Journal of Power Electronics and Drive System (IJPEDS), 6(4), 772–780.
  • K. T. Chau. (2016). Energy Systems for Electric and Hybrid Vehicles. In K. T. Chau (Ed.), Energy Systems for Electric and Hybrid Vehicles. Institution of Engineering and Technology. doi: 10.1049/PBTR002E
  • Kamaga, M., Sung, K., Sato, Y., & Ohashi, H. (2011). An investigation of flying capacitor converter for circuit integration. IEEJ Transactions on Electrical and Electronic Engineering, 6(4), 376–383. doi: 10.1002/tee.20671
  • Kavianipour, M., Fakhrmoosavi, F., Singh, H., Ghamami, M., Zockaie, A., Ouyang, Y., & Jackson, R. (2021). Electric vehicle fast charging infrastructure planning in urban networks considering daily travel and charging behavior. Transportation Research Part D: Transport and Environment, 93, 102769. doi: 10.1016/j.trd.2021.102769
  • Khaligh, A., & Dusmez, S. (2012). Comprehensive topological analysis of conductive and inductive charging solutions for plug-in electric vehicles. IEEE Transactions on Vehicular Technology, 61(8), 3475–3489. doi: 10.1109/TVT.2012.2213104
  • Kushwaha, R., & Singh, B. (2020a). Design and Development of Modified BL Luo Converter for PQ Improvement in EV Charger. IEEE Transactions on Industry Applications, 56(4), 3976–3984. doi: 10.1109/TIA.2020.2988197
  • Kushwaha, R., & Singh, B. (2020b). Interleaved Landsman Converter Fed EV Battery Charger with Power Factor Correction. IEEE Transactions on Industry Applications, 56(4), 4179–4192. doi: 10.1109/TIA.2020.2988174
  • Lee, J. H., Moon, J. S., Lee, Y. S., Kim, Y. R., & Won, C. Y. (2011). Fast charging technique for EV battery charger using three-phase AC-DC boost converter. IECON Proceedings (Industrial Electronics Conference), 4577–4582. doi: 10.1109/IECON.2011.6120064
  • Lee, J. Y., Heo, K. W., Kim, K. T., & Jung, J. H. (2020). Analysis and design of three-phase buck rectifier employing UPS to supply high reliable dc power. Energies, 13(7), 1704. doi: 10.3390/en13071704
  • Liu, J., Xu, W., Chan, K. W., Liu, M., Zhang, X., & Chan, N. H. L. (2020). A Three-Phase Single-Stage AC-DC Wireless-Power-Transfer Converter with Power Factor Correction and Bus Voltage Control. IEEE Journal of Emerging and Selected Topics in Power Electronics, 8(2), 1782–1800. doi: 10.1109/JESTPE.2019.2916258
  • Menon, M., & Jacob, B. (2021). A Simplified Space Vector Pulse Density Modulation Scheme without Coordinate Transformation and Sector Identification. IEEE Transactions on Industrial Electronics, 1–1. doi: 10.1109/TIE.2021.3080201
  • Metwly, M. Y., Abdel-Majeed, M. S., Abdel-Khalik, A. S., Hamdy, R. A., Hamad, M. S., & Ahmed, S. (2020). A Review of Integrated On-Board EV Battery Chargers: Advanced Topologies, Recent Developments and Optimal Selection of FSCW Slot/Pole Combination. IEEE Access, 8, 85216–85242. doi: 10.1109/ACCESS.2020.2992741
  • Monteiro, V., Afonso, J., Sousa, T., & Afonso, J. L. (2020). The role of off-board EV battery chargers in smart homes and smart grids: Operation with renewables and energy storage systems. Electric Vehicles in Energy Systems: Modelling, Integration, Analysis, and Optimization, 47–72. doi: 10.1007/978-3-030-34448-1_3
  • Monteiro, V., Ferreira, J. C., Nogueiras Melendez, A. A., Couto, C., & Afonso, J. L. (2018). Experimental Validation of a Novel Architecture Based on a Dual-Stage Converter for Off-Board Fast Battery Chargers of Electric Vehicles. IEEE Transactions on Vehicular Technology, 67(2), 1000–1011. doi: 10.1109/TVT.2017.2755545
  • Nayak, S. K. (2019, December 1). Electric Vehicle Charging Topologies, Control Schemes for Smart City Application. 2019 IEEE Transportation Electrification Conference, ITEC-India 2019. doi: 10.1109/ITEC-India48457.2019.ITECIndia2019-229
  • Prajapati, D., Ravindran, V., Sutaria, J., Patel, P., & Professor, A. (2014). A Comparative Study of Three Phase 2-Level VSI with 3-Level and 5-Level Diode Clamped Multilevel Inverter. International Journal of Emerging Technology and Advanced Engineering , 4(4), 713. Retrieved from www.ijetae.com
  • Praneeth, A. V. J. S., & Williamson, S. S. (2018). A Review of Front End AC-DC Topologies in Universal Battery Charger for Electric Transportation. 2018 IEEE Transportation and Electrification Conference and Expo, ITEC 2018, 916–921. doi: 10.1109/ITEC.2018.8450186
  • Prayag, A., & Bodkhe, S. (2017, February 13). A comparative analysis of classical three phase multilevel (five level) inverter topologies. 1st IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems, ICPEICES 2016. doi: 10.1109/ICPEICES.2016.7853567
  • Sah, S., & Rizvi, T. (2021). Power Quality Improvement using Shunt Active Filters with Multilevel Inverter. International Journal for Research Trends and Innovation , 6(4). Retrieved from www.ijrti.org
  • Saleeb, H., Sayed, K., Kassem, A., & Mostafa, R. (2019). Power management strategy for battery electric vehicles. IET Electrical Systems in Transportation, 9(2), 65–74. doi: 10.1049/iet-est.2018.5026
  • Sam, C. A., & Jegathesan, V. (2021). Bidirectional integrated on-board chargers for electric vehicles—a review. Sadhana - Academy Proceedings in Engineering Sciences, 46(1), 1–14. doi: 10.1007/s12046-020-01556-2
  • Sandoval, J. J., Essakiappan, S., & Enjeti, P. (2015). A bidirectional series resonant matrix converter topology for electric vehicle DC fast charging. Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2015-May(May), 3109–3116. doi: 10.1109/APEC.2015.7104795
  • Sayed, K., & Gabbar, H. (2016). Electric Vehicle to Power Grid Integration Using Three-Phase Three-Level AC/DC Converter and PI-Fuzzy Controller. Energies, 9(7), 532. doi: 10.3390/en9070532
  • Shaikh, O., Siddiqui, S. ul I., Khan, A., Riaz, S., & Tarique, S. (2021). Three Phase Transformer Based Cascaded H-Bridge Multilevel Inverter. 2021 International Conference on Emerging Power Technologies (ICEPT), 1–5. doi: 10.1109/ICEPT51706.2021.9435531
  • Sharma, G., Sood, V. K., Alam, M. S., & Shariff, S. M. (2020). Comparison of common DC and AC bus architectures for EV fast charging stations and impact on power quality. ETransportation, 5, 100066. doi: 10.1016/j.etran.2020.100066
  • Singh, B., Singh, B. N., Chandra, A., Al-Haddad, K., Pandey, A., & Kothari, D. P. (2004). A review of three-phase improved power quality AC-DC converters. IEEE Transactions on Industrial Electronics, 51(3), 641–660. doi: 10.1109/TIE.2004.825341
  • Singh, B., Singh, S., Chandra, A., & Al-Haddad, K. (2011). Comprehensive study of single-phase AC-DC power factor corrected converters with high-frequency isolation. IEEE Transactions on Industrial Informatics, 7(4), 540–556. doi: 10.1109/TII.2011.2166798
  • Soeiro, T., Friedli, T., & Kolar, J. W. (2012). Three-phase high power factor mains interface concepts for electric vehicle battery charging systems. Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2603–2610. doi: 10.1109/APEC.2012.6166190
  • Sreedhar, R., Karunanithi, K., Chandrasekar, P., & Teja, R. B. (2021). Nearest Space-Vector Control Strategy for High-Resolution Multilevel Inverters. 6th International Conference for Convergence in Technology (I2CT), 1–6. doi: 10.1109/i2ct51068.2021.9417882
  • Tan, K. M., Ramachandaramurthy, V. K., & Yong, J. Y. (2016). Three-phase bidirectional electric vehicle charger for vehicle to grid operation and grid voltage regulation. 2016 IEEE Transportation Electrification Conference and Expo, Asia-Pacific, ITEC Asia-Pacific 2016, 7–12. doi: 10.1109/ITEC-AP.2016.7512913
  • Turksoy, O., Yilmaz, U., & Teke, A. (2018). Overview of Battery Charger Topologies in Plug-In Electric and Hybrid Electric Vehicles. 16th International Conference on Clean Energy (ICCE-2018), 1–8. Retrieved from https://www.researchgate.net/publication/327422059
  • Verma, A., & Singh, B. (2019). Multi-Objective Reconfigurable Three-Phase Off-Board Charger for EV. IEEE Transactions on Industry Applications, 55(4), 4192–4203. doi: 10.1109/TIA.2019.2908950
  • Vivek, G., Nair, M. D., Biswas, J., & Barai, M. (2021). Design space exploration of optimized hybrid SVPWM techniques based on spatial region for three level VSI. Electrical Engineering, 1, 3. doi: 10.1007/s00202-021-01245-1
  • Wang, Q., Deng, F., Liu, C., Heng, Q., & Chen, Z. (2019). Thyristor-based modular multilevel converter-HVDC systems with current interruption capability. IET Power Electronics, 12(12), 3056–3067. doi: 10.1049/iet-pel.2019.0213
  • Yacoubi, L., Al-Haddad, K., Fnaiech, F., & Dessaint, L. A. (2005). A DSP-based implementation of a new nonlinear control for a three-phase neutral point clamped boost rectifier prototype. IEEE Transactions on Industrial Electronics, 52(1), 197–205. doi: 10.1109/TIE.2004.837913
  • Yaramasu, V., Dekka, A., & Kouro, S. (2021). Multilevel converters for renewable energy systems. In Multilevel Inverters (pp. 155–184). Elsevier. doi: 10.1016/b978-0-323-90217-5.00007-1
  • Yildirim, D., Ozturk, S., Cadirci, I., & Ermiş, M. (2020). All SiC PWM rectifier-based off-board ultrafast charger for heavy electric vehicles. IET Power Electronics, 13(3), 483–494. doi: 10.1049/iet-pel.2019.0583
  • Yilmaz, M., & Krein, P. T. (2013). Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles. In IEEE Transactions on Power Electronics (Vol. 28, Issue 5, pp. 2151–2169). doi: 10.1109/TPEL.2012.2212917
  • Yuan, J., Dorn-Gomba, L., Callegaro, A. D., Reimers, J., & Emadi, A. (2021). A review of bidirectional on-board chargers for electric vehicles. In IEEE Access (Vol. 9, pp. 51501–51518). Institute of Electrical and Electronics Engineers Inc. doi: 10.1109/ACCESS.2021.3069448
  • Zhang, Z., Xu, H., Shi, L., Li, D., & Han, Y. (2012). A unit power factor DC fast charger for electric vehicle charging station. Conference Proceedings - 2012 IEEE 7th International Power Electronics and Motion Control Conference - ECCE Asia, IPEMC 2012, 1, 411–415. doi: 10.1109/IPEMC.2012.6258896
There are 55 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Merve Mollahasanoğlu 0000-0002-6133-2717

Halil Okumuş 0000-0002-4303-5057

Publication Date December 31, 2021
Published in Issue Year 2021

Cite

APA Mollahasanoğlu, M., & Okumuş, H. (2021). A Review of Three Phase AC-DC Power Factor Correction Converters for Electric Vehicle Fast Charging. Avrupa Bilim Ve Teknoloji Dergisi(32), 663-669. https://doi.org/10.31590/ejosat.1041081