Havai Rüzgar Enerji Sistemleri için Sürekli Mıknatıslı Senkron Generator Tasarım ve Optimizasyonu
Year 2022,
, 154 - 160, 31.01.2022
Esra Çelik
,
Muhammed Garip
Abstract
Havai rüzgar enerjisi sistemleri (Airborne Wind Energy Systems), geleneksel rüzgar türbinlerine oranla yüksek rüzgar hızlarına ulaşabilmeleri ve daha az malzemeye gereksinim duymaları nedeniyle son yirmi yılda geleneksel rüzgar türbinlerine alternatif olarak geliştirilmiştir. Genellikle elektrik generatörünün konumuna göre tümleşik (on-board) veya yerde şeklinde sınıflandırılırlar ve her iki tipte de kule yerine kabloyu taşıyan bir halat bulunur. Bu makale, bir havai rüzgar enerjisi sistemi için sürekli mıknatıslı radyal tip elektrik generatörünün (pmsm) elektromanyetik tasarımını ve optimizasyonunu sunmaktadır. 44kW bir sistem için ünite ve güç sayısı değiştirilerek uygun güç-ağırlık (P/W) oranını ve makinenin verimini sağlayan optimal parametreler araştırılmıştır. Analitik modeli elde edilen makinenin optimizasyonu genetik algoritma yöntemi ile Matlab yazılımı kullanılarak gerçekleştirilmiştir. Tasarım sonuçlarının doğrulanması için sonlu elemanlar analizi yöntemi Ansys-Maxwell programında uygulanmıştır.
References
- Adhikari, J., & Panda S. K. (2015). Generation and Transmission of Electrical Energy in High-Altitude Wind Power Generating System. IEEE Journal of Emerging and Selected Topics in Power Electronics, 3 (2). https://doi.org/10.1109/JESTPE.2015.2388702
- Airborne Wind Europe. (2021, November 12). About Airborne Wind Energy. https://airbornewindeurope.org/about-airborne-wind-energy/
- Aull, M., Stough, A., & Cohen K.(2020). Design Optimization and Sizing for Fly-Gen Airborne Wind Energy Systems. Automation, 1 (1),1–16. https://doi.org/10.3390/automation1010001
- Bianchi, N., Bolognani, S., & Frare P.(2006). Design criteria for high-efficiency SPM synchronous motors. IEEE Trans. Energy Conversion, 21 (2), 396–404. https://doi.org/10.1109/TEC.2005.853720
- Carlos, G. G., Bulmaro, M. G., Honorato, A. C., & Amparo, P. M. (2010). Design of a 3.5 meters rotor two bladed horizontal axis wind turbine. Proc. 20th Int. Conf. on Electronics, Communications and Computer (CONIELECOMP 2010), 247–251. doi: 10.1109/CONIELECOMP.2010.5440758
- Cherubini, A., Papini, A., Vertechy, R. , & Fontana, M. (2015). Airborne Wind Energy Systems: A review of the technologies. Renewable and Sustainable Energy Reviews, 51, pp. 1461-1476. https://doi.org/10.1016/j.rser.2015.07.053
- Emetor. (2021, September 10). Electric motor winding calculator.https://www.emetor.com/windings/
- Gammeter, C., Drapela, Y., Tüysüz A., & Kolar J.W. (2015). Weight optimization of a machine for airborne wind turbines. IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society. https://doi.org/10.1109/IECON.2014.7048616
- Kitekraft. (2021, November 12). https://www.kitekraft.de/
- Loyd, M. L., (1980). Crosswind kite power. J. Energy, 4 (3), 106– 111.
- Rancourt, D., Bolduc-Teasdale, F., Bouchard E.D., Anderson, M. J., & Mavris, D. N. (2016). Design space exploration of gyrocopter-type airborne wind turbines. Wind Energy, 19 (5), 895–909. https://doi.org/ 10.1002/WE.1873.
- Subotic, I., Gammeter, C., Tüysüz, A., & Kolar J. W.(2016). Weight optimization of an axial-flux PM machine for airborne wind turbines. IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES). https://doi.org/10.1109/PEDES.2016.7914327
- Tarımer, İ., Arslan, S., & Güven, M. E. (2012). Investigation for Losses of M19 and Amorphous Core Materials Asynchronous Motor by Finite Elements Methods. Elektronıka Ir Elektrotechnıka, 18 (9). https://doi.org/10.5755/j01.eee.18.9.2797
- Windlift. (2021, November 12). Airborne Power Generators. https://windlift.com/
- Zhang, X., Lı, L., & Zhang, C. (2020). Mass Optimization Method of a Surface-Mounted Permanent Magnet Synchronous Motor Based on a Lightweight Structure. IEEE-Access, 8, 40431 - 40444. https://doi.org/10.1109/ACCESS.2020.2974908
- Zhu, Z. Q., Howe, D., Bolte, E , & Ackermann B. (1993). Instantaneous magnetic field distribution in brushless permanent magnet DC motors. I. Open-circuit field. IEEE Trans. Magn., 29 (1), 124-135. https://doi.org/10.1109/20.195559
Permanent Magnet Synchronous Generator Design and Optimization for Airborne Wind Energy Systems
Year 2022,
, 154 - 160, 31.01.2022
Esra Çelik
,
Muhammed Garip
Abstract
Airborne wind energy systems have been developed as an alternative to conventional wind turbines in the last two decades since they can reach higher wind speeds and require less material than conventional wind turbines. They are generally classified as on-board or ground based depending on the location of the electric generator, and both types have a tether carrying the cable instead of the tower. This article presents the electromagnetic design and optimization of a permanent magnet synchronous generator (radial type) for an airborne wind power system. For a 44kW system, the optimal parameters that provide the appropriate power-to-weight (P/W) ratio and the efficiency of the machine were investigated by adjusting the number of units and power. The optimization of the machine, whose analytical model was obtained, was carried out using Matlab software utilizing the genetic algorithm method. Three-dimensional finite element analysis method was used to verify the design results with the Ansys-Maxwell program.
References
- Adhikari, J., & Panda S. K. (2015). Generation and Transmission of Electrical Energy in High-Altitude Wind Power Generating System. IEEE Journal of Emerging and Selected Topics in Power Electronics, 3 (2). https://doi.org/10.1109/JESTPE.2015.2388702
- Airborne Wind Europe. (2021, November 12). About Airborne Wind Energy. https://airbornewindeurope.org/about-airborne-wind-energy/
- Aull, M., Stough, A., & Cohen K.(2020). Design Optimization and Sizing for Fly-Gen Airborne Wind Energy Systems. Automation, 1 (1),1–16. https://doi.org/10.3390/automation1010001
- Bianchi, N., Bolognani, S., & Frare P.(2006). Design criteria for high-efficiency SPM synchronous motors. IEEE Trans. Energy Conversion, 21 (2), 396–404. https://doi.org/10.1109/TEC.2005.853720
- Carlos, G. G., Bulmaro, M. G., Honorato, A. C., & Amparo, P. M. (2010). Design of a 3.5 meters rotor two bladed horizontal axis wind turbine. Proc. 20th Int. Conf. on Electronics, Communications and Computer (CONIELECOMP 2010), 247–251. doi: 10.1109/CONIELECOMP.2010.5440758
- Cherubini, A., Papini, A., Vertechy, R. , & Fontana, M. (2015). Airborne Wind Energy Systems: A review of the technologies. Renewable and Sustainable Energy Reviews, 51, pp. 1461-1476. https://doi.org/10.1016/j.rser.2015.07.053
- Emetor. (2021, September 10). Electric motor winding calculator.https://www.emetor.com/windings/
- Gammeter, C., Drapela, Y., Tüysüz A., & Kolar J.W. (2015). Weight optimization of a machine for airborne wind turbines. IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society. https://doi.org/10.1109/IECON.2014.7048616
- Kitekraft. (2021, November 12). https://www.kitekraft.de/
- Loyd, M. L., (1980). Crosswind kite power. J. Energy, 4 (3), 106– 111.
- Rancourt, D., Bolduc-Teasdale, F., Bouchard E.D., Anderson, M. J., & Mavris, D. N. (2016). Design space exploration of gyrocopter-type airborne wind turbines. Wind Energy, 19 (5), 895–909. https://doi.org/ 10.1002/WE.1873.
- Subotic, I., Gammeter, C., Tüysüz, A., & Kolar J. W.(2016). Weight optimization of an axial-flux PM machine for airborne wind turbines. IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES). https://doi.org/10.1109/PEDES.2016.7914327
- Tarımer, İ., Arslan, S., & Güven, M. E. (2012). Investigation for Losses of M19 and Amorphous Core Materials Asynchronous Motor by Finite Elements Methods. Elektronıka Ir Elektrotechnıka, 18 (9). https://doi.org/10.5755/j01.eee.18.9.2797
- Windlift. (2021, November 12). Airborne Power Generators. https://windlift.com/
- Zhang, X., Lı, L., & Zhang, C. (2020). Mass Optimization Method of a Surface-Mounted Permanent Magnet Synchronous Motor Based on a Lightweight Structure. IEEE-Access, 8, 40431 - 40444. https://doi.org/10.1109/ACCESS.2020.2974908
- Zhu, Z. Q., Howe, D., Bolte, E , & Ackermann B. (1993). Instantaneous magnetic field distribution in brushless permanent magnet DC motors. I. Open-circuit field. IEEE Trans. Magn., 29 (1), 124-135. https://doi.org/10.1109/20.195559