Research Article
BibTex RIS Cite

Yeni Nesil, Modüler ve Akıllı Batarya Yönetim Sistemi

Year 2021, , 1103 - 1112, 31.12.2021
https://doi.org/10.31590/ejosat.1045564

Abstract

Günümüzde başta elektrikli (kara, hava ve deniz) araçlar olmak üzere batarya yönetim sistemleri (BYS), güneş ve rüzgâr gibi yenilenebilir enerji santrallerinin enerji depolama ve yedekliliğinde kritik bir rol oynamaktadır. Bu kapsamda hali hazırda perakende enerji sektöründe bulunan batarya yönetim sistemlerinin tüm fornsiyonlarını yerine getirirken; bu donanımlara bir benzeri dahi olmayan ek inovatif çözümler sunacak yeni nesil, modüler ve akıllı batarya yönetim sisteminin yerli olarak üretilip geliştirilmesi için 2018 yılında TUBİTAK 1512 Teknogirişim Sermaye Desteği Programı kapsamında, 2170454 numaralı ve “E-CAMELEON - Elektrikli Araçlar İçin Adaptif Batarya Yönetim Sistemi” başlılı projesi ile çalışmalara başlanılmıştır. Bu kapsamda BMS’nin ilk versiyonu geliştirilerek, proje başarı ile sonuçlandırılmıştır. Mevcut BSM’nin daha da geliştirilerek farklı çözümler için de kullanılabilmesi adına İnönü Üniversitesi tarafından desteklenen, FOA-2018-1358 numaralı ve “Elektrikli Araçlarda Yeni Nesil Batarya ve Güç Yönetim Sistemlerinin Modellenmesi Geliştirilmesi ve Bataryaların Geri Dönüşüm Süreçlerinin Analizi” başlıklı proje başarı ile tamamlanarak; yerli yazılım, tasarım ve donanım ile yeni nesil, modüler ve akıllı batarya yönetim sistemi geliştirilmiştir. Bu çalışmalar kapsamında “Lityum Tabanlı Piller için Pil Kimyasını Elektronik Olarak Belirleme Yöntemi, 2021/005464, H01M 10/0525”, “Hibrit ve Elektrikli Araç Batarya Ekspertiz Sistemi ve Yöntemi 2021/018933, 2021-GE-827584” ve “Pil Kimyasını Otomatik Belirleyebilen Adaptif, Modüler ve Akıllı Batarya Yönetim Sistemi, 2021/018973, 2021-GE-831229” içeriklerinde üç farklı patent geliştirlmiştir. Tüm bu süreç içerisinde elde edilen sonuçlar çalışmayla sunulmuştur.

Supporting Institution

TÜBİTAK

Project Number

2170454

Thanks

Projemize vermiş oldukları desteklerden ötürü teşekkür ederiz.

References

  • Anwar, S., Zia, M. Y., Rashid, M., Rubens, G. Z., & Enevoldsen, P. (2020). Towards Ferry Electrification in the Maritime Sector. In Energies (Vol. 13, Issue 24). https://doi.org/10.3390/en13246506
  • Brost, R. D. (1998). Performance of valve-regulated lead acid batteries in EV1 extended series strings. Proceedings of the Annual Battery Conference on Applications and Advances, 25–29. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031675716&partnerID=40&md5=c2f407383f57af95ba2c53c0de88297f
  • Caruthers, F. (1994). Battery-management Circuitry Gets Smarte. Computer Design’s OEM Integration, May, 15–18.
  • Cates, R., & Richey, R. (1996). Charge NiCd and NiMH Batteries Properly. Electronic Design, June 10, 118–122.
  • Cheng, L., Acuna, P., Aguilera, R. P., Jiang, J., Flecther, J., & Baier, C. (2017). Model predictive control for Energy Management of a hybrid energy storage system in Light Rail Vehicles. 2017 11th IEEE International Conference on Compatibility, Power Electronics and Power Engineering, CPE-POWERENG 2017, 683–688. https://doi.org/10.1109/CPE.2017.7915255
  • Cheng, L., Wang, W., Wei, S., Lin, H., & Jia, Z. (2018). An improved energy management strategy for hybrid energy storage system in light rail vehicles. Energies, 11(2). https://doi.org/10.3390/en11020423
  • Da Moraes, C. G., Junior, S. L. B., Cavilha, P. P., Pacheco, A. L. S., Heldwein, M. L., & Waltrich, G. (2019). Multi-Port System for Storage and Management of Regenerative Braking Energy in Diesel-Electric Locomotives. 2019 IEEE 15th Brazilian Power Electronics Conference and 5th IEEE Southern Power Electronics Conference, COBEP/SPEC 2019. https://doi.org/10.1109/COBEP/SPEC44138.2019.9065725
  • Dikmen, İ C, & Karadağ, T. (2021). Onboard Battery Type Determination. 2021 5th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), 360–365. https://doi.org/10.1109/ISMSIT52890.2021.9604658
  • Dikmen, İsmail Can, & Karadağ, T. (2021). Lityum Tabanlı Piller için Pil Kimyasını Elektronik Olarak Belirleme Yöntemi (Patent No. Patent No:2021-GE-212728). https://portal.turkpatent.gov.tr/anonim/arastirma/patent/sonuc/dosya?patentAppNo=2021%2F005464&documentsTpye=all
  • Dikmen, İsmail Can, Seven, S., & Karadağ, T. (2018). A Numerical Study for Automatic Battery Identification in Hybrid Battery Packs for Electric Vehicles. Proceedings of the International 9th Automotive Technologies Congress, 825–832.
  • Ertugrul, N., Kani, A. P., Davies, M., Sbarbaro, D., & Morán, L. (2020). Status of Mine Electrification and Future Potentials. 2020 International Conference on Smart Grids and Energy Systems (SGES), 151–156. https://doi.org/10.1109/SGES51519.2020.00034
  • Fang, S., Wang, Y., Gou, B., & Xu, Y. (2020). Toward Future Green Maritime Transportation: An Overview of Seaport Microgrids and All-Electric Ships. IEEE Transactions on Vehicular Technology, 69(1), 207–219. https://doi.org/10.1109/TVT.2019.2950538
  • Freeman, D. (1995). Freeing Portables from Battery Tyranny. Electronic Design, July 10, 115–121.
  • Gao, F., Zhang, G., Shi, Y., & Qiang, G. (2019). Energy Management Strategy for New Type Urban Rail Vehicle Hybrid Power System . Tiedao Xuebao/Journal of the China Railway Society, 41(4), 48–54. https://doi.org/10.3969/j.issn.1001-8360.2019.04.007
  • Glover, M., & Kimberley, W. (1996). Kind of hush. Automotive Engineer (London), 21(6). https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030379484&partnerID=40&md5=41f683ae8437770cff7647810c7e9f4f
  • Goodenough, F. (1993). Battery-based Systems Demand Unique ICs. Electronic Design, 39(14), 47–61.
  • Goodenough, F. (1996a). Battery Management ICs Meet Diverse Needs. Electronic Design, August 19, 79–96.
  • Goodenough, F. (1996b). Microcontroller Grabs Data and Processes Analogue Data. Electronic Design, April 15, 139–144.
  • Groppi, D., Pfeifer, A., Garcia, D. A., Krajačić, G., & Duić, N. (2021). A review on energy storage and demand side management solutions in smart energy islands. Renewable and Sustainable Energy Reviews, 135, 110183. https://doi.org/https://doi.org/10.1016/j.rser.2020.110183
  • Haldar, S., Mondal, S., Mondal, A., & Banerjee, R. (2020). Battery Management System Using State of Charge Estimation: An IOT Based Approach. 2020 National Conference on Emerging Trends on Sustainable Technology and Engineering Applications (NCETSTEA), 1–5. https://doi.org/10.1109/NCETSTEA48365.2020.9119945
  • Hayden, C. L. (1981). Electric vehicle battery management. SAE Technical Papers. https://doi.org/10.4271/810417
  • Herrera, V. I., Gaztañaga, H., Milo, A., Saez-De-Ibarra, A., Etxeberria-Otadui, I., & Nieva, T. (2016). Optimal Energy Management and Sizing of a Battery-Supercapacitor-Based Light Rail Vehicle with a Multiobjective Approach. IEEE Transactions on Industry Applications, 52(4), 3367–3377. https://doi.org/10.1109/TIA.2016.2555790
  • Herrera, V., Milo, A., Gaztañaga, H., Etxeberria-Otadui, I., Villarreal, I., & Camblong, H. (2016). Adaptive energy management strategy and optimal sizing applied on a battery-supercapacitor based tramway. Applied Energy, 169, 831–845. https://doi.org/10.1016/j.apenergy.2016.02.079
  • Huang, K., Wang, Y., & Feng, J. (2021). Design of lithium-ion battery management system for mine electric vehicle. IOP Conference Series: Earth and Environmental Science, 680(1). https://doi.org/10.1088/1755-1315/680/1/012015 ISO 11898 Road vehicles — Controller area network (CAN). (n.d.). International Organization for Standardization (ISO). https://www.iso.org/standard/63648.html
  • Jeong, B., Jeon, H., Kim, S., Kim, J., & Zhou, P. (2020). Evaluation of the Lifecycle Environmental Benefits of Full Battery Powered Ships: Comparative Analysis of Marine Diesel and Electricity. In Journal of Marine Science and Engineering (Vol. 8, Issue 8). https://doi.org/10.3390/jmse8080580
  • Johnson, B. C. (1999). Environmental products that drive organizational change: General motor’s electric vehicle (EV1). Corporate Environmental Strategy, 6(2), 140–150. https://doi.org/https://doi.org/10.1016/S1066-7938(00)80024-X
  • Jones, G. (1991). Battery Management in Modem Portable Systems. Electronic Engineering, 43–52.
  • Jossen, A., Späth, V., Döring, H., & Garche, J. (1999). Reliable battery operation — a challenge for the battery management system. Journal of Power Sources, 84(2), 283–286. https://doi.org/https://doi.org/10.1016/S0378-7753(99)00329-8
  • Kang, J., Guo, Y., & Liu, J. (2020). Rule-based energy management strategies for a fuel cell-battery hybrid locomotive. 2020 IEEE 4th Conference on Energy Internet and Energy System Integration: Connecting the Grids Towards a Low-Carbon High-Efficiency Energy System, EI2 2020, 45–50. https://doi.org/10.1109/EI250167.2020.9346652
  • Kerridge, B. (1993). Battery Management ICs. EDN, May 13, 100–108.
  • Kim, T., Makwana, D., Adhikaree, A., Vagdoda, J. S., & Lee, Y. (2018). Cloud-Based Battery Condition Monitoring and Fault Diagnosis Platform for Large-Scale Lithium-Ion Battery Energy Storage Systems. In Energies (Vol. 11, Issue 1). https://doi.org/10.3390/en11010125
  • Krastevm, I., Mukherjee, N., Tricoli, P., & Hillmansen, S. (2015). New modular hybrid energy storage system and its control strategy for a fuel cell locomotive. 2015 17th European Conference on Power Electronics and Applications, EPE-ECCE Europe 2015. https://doi.org/10.1109/EPE.2015.7309371
  • Kruger, R., & Barrick, J. W. (1966). Battery ratings. SAE Technical Papers. https://doi.org/10.4271/660029
  • Kumar, D., & Zare, F. (2019). A Comprehensive Review of Maritime Microgrids: System Architectures, Energy Efficiency, Power Quality, and Regulations. IEEE Access, 7, 67249–67277. https://doi.org/10.1109/ACCESS.2019.2917082
  • Li, L., Huang, Z., Li, H., & Peng, J. (2017). A rapid cell voltage balancing scheme for supercapacitor based energy storage systems for urban rail vehicles. Electric Power Systems Research, 142, 329–340. https://doi.org/10.1016/j.epsr.2016.09.021
  • Li, S., & Zhao, P. (2021). Big data driven vehicle battery management method: A novel cyber-physical system perspective. Journal of Energy Storage, 33, 102064. https://doi.org/https://doi.org/10.1016/j.est.2020.102064
  • Lumertz, M. M., da Cruz, F. G., Lamperti, R. D., Pasa, L. A., & Marujo, D. (2021). Damaged Cell Location on Lithium-Ion Batteries Using Artificial Neural Networks BT - Control Applications in Modern Power System (A. K. Singh & M. Tripathy (Eds.); pp. 477–486). Springer Singapore.
  • Ma, S., Lin, M., Lin, T.-E., Lan, T., Liao, X., Maréchal, F., Van herle, J., Yang, Y., Dong, C., & Wang, L. (2021). Fuel cell-battery hybrid systems for mobility and off-grid applications: A review. Renewable and Sustainable Energy Reviews, 135, 110119. https://doi.org/https://doi.org/10.1016/j.rser.2020.110119
  • Maliniak, D. (1995). Intelligence Invades the Battery Pack. Electronic Design, January 9, 153–159.
  • Masaak, S., Kiyoak, K., Masahiko, K., Yoshiaki, T., & Hiroshige, S. (1998). Electronic Apparatus, Battery Management System, and Battery Management Method (Patent No. 5635813).
  • Mutarraf, M. U., Terriche, Y., Niazi, K. A., Vasquez, J. C., & Guerrero, J. M. (2018). Energy Storage Systems for Shipboard Microgrids—A Review. In Energies (Vol. 11, Issue 12). https://doi.org/10.3390/en11123492
  • Nguyen, H. P., Hoang, A. T., Nizetic, S., Nguyen, X. P., Le, A. T., Luong, C. N., Chu, V. D., & Pham, V. V. (2020). The electric propulsion system as a green solution for management strategy of CO2 emission in ocean shipping: A comprehensive review. International Transactions on Electrical Energy Systems, n/a(n/a), e12580. https://doi.org/https://doi.org/10.1002/2050-7038.12580
  • Noyce, R. N. (1959). Semiconductor device-and-lead structure (Patent No. US2981877A).
  • Nuchturee, C., Li, T., & Xia, H. (2020). Energy efficiency of integrated electric propulsion for ships – A review. Renewable and Sustainable Energy Reviews, 134, 110145. https://doi.org/https://doi.org/10.1016/j.rser.2020.110145
  • Peng, H., Li, J., Löwenstein, L., & Hameyer, K. (2020). A scalable, causal, adaptive energy management strategy based on optimal control theory for a fuel cell hybrid railway vehicle. Applied Energy, 267. https://doi.org/10.1016/j.apenergy.2020.114987
  • Pfeifer, A., Prebeg, P., & Duić, N. (2020). Challenges and opportunities of zero emission shipping in smart islands: A study of zero emission ferry lines. ETransportation, 3, 100048. https://doi.org/https://doi.org/10.1016/j.etran.2020.100048 Richards, P. (2002). A CAN Physical Layer Discussion (No. AN228). http://ww1.microchip.com/downloads/en/appnotes/00228a.pdf
  • Sarma, U., & Ganguly, S. (2020). Design optimisation for component sizing using multi-objective particle swarm optimisation and control of PEM fuel cellbattery hybrid energy system for locomotive application. IET Electrical Systems in Transportation, 10(1), 52–61. https://doi.org/10.1049/iet-est.2018.5053
  • Singirikonda, S., & Obulesu, Y. P. (2021). Advanced SOC and SOH Estimation Methods for EV Batteries—A Review BT - Advances in Automation, Signal Processing, Instrumentation, and Control (V. L. N. Komanapalli, N. Sivakumaran, & S. Hampannavar (Eds.); pp. 1963–1977). Springer Singapore.
  • Sivaraman, P., & Sharmeela, C. (2020). IoT-Based Battery Management System for Hybrid Electric Vehicle. In Artificial Intelligent Techniques for Electric and Hybrid Electric Vehicles (pp. 1–16). https://doi.org/https://doi.org/10.1002/9781119682035.ch1
  • Swager, A. W. (1995). Smart-Battery Technology: Power Management’s Missing Link. EDN, March 2, 47–64. Taylor, D. F., & Siwek, E. G. (1973). The dynamic characterization of lead-acid batteries for vehicle applications. SAE Technical Papers. https://doi.org/10.4271/730252
  • Wang, Y., Tian, J., Sun, Z., Wang, L., Xu, R., Li, M., & Chen, Z. (2020). A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems. Renewable and Sustainable Energy Reviews, 131, 110015. https://doi.org/https://doi.org/10.1016/j.rser.2020.110015 Wired wheels. (1996). Industry Week, 245(20), 50. https://www.scopus.com/inward/record.uri?eid=2-s2.0-8444245678&partnerID=40&md5=b72a966737c652d17b961ab2c9f98704
  • Xing, Y., Ma, E. W. M., Tsui, K. L., & Pecht, M. (2011). Battery Management Systems in Electric and Hybrid Vehicles. In Energies (Vol. 4, Issue 11). https://doi.org/10.3390/en4111840
  • Zhang, X., Liu, L., Dai, Y., & Lu, T. (2018). Experimental investigation on the online fuzzy energy management of hybrid fuel cell/battery power system for UAVs. International Journal of Hydrogen Energy, 43(21), 10094–10103. https://doi.org/https://doi.org/10.1016/j.ijhydene.2018.04.075
  • Ziegler, A., Oeser, D., Hein, T., Montesinos-Miracle, D., & Ackva, A. (2021). Reducing cell to cell variation of lithium-ion battery packs during operation. IEEE Access. https://doi.org/10.1109/ACCESS.2021.3057125

Next Generation, Modular and Smart Battery Management System

Year 2021, , 1103 - 1112, 31.12.2021
https://doi.org/10.31590/ejosat.1045564

Abstract

Today, battery management systems (BMS) play a critical role not only in electric (land, air and sea) vehicles but also electrical energy storage and redundancy of renewable energy plants such as solar and wind. In this regard, for the domestic development and production of a new generation, modular and smart battery management system that fulfills all the functions of BMSs, which are currently in the retail energy sector, and offers additional unique innovative solutions; studies were started in 2018 within the scope of TUBITAK 1512 Entrepreneurship Support Program. The project is numbered 2170454 and titled "E-CAMELEON - Adaptive Battery Management System for Electric Vehicles". As a result of the project, the first version of the BMS with unique features was developed and the project was completed successfully. In order for BMS to be further developed and capable of being used for various solutions; a new project supported by Inonu University has been initiated. The project numbered FOA-2018-1358 and titled "Modelling, Development of New Generation Battery and Power Management Systems in Electric Vehicles and Analysis of the Recycling Processes of Batteries". This proceeding project has also been successfully completed. As the final product of the project, software and hardware were developed with distinctive design, and thus a new generation, modular and smart battery management system was produced. Following these studies three different patent applications completed as “Automatically Determining Battery Chemistry, Adaptive, Modular and Intelligent Battery Management System, 2021/018973, 2021-GE-831229”, "Method for Electronically Determining Battery Chemistry

Project Number

2170454

References

  • Anwar, S., Zia, M. Y., Rashid, M., Rubens, G. Z., & Enevoldsen, P. (2020). Towards Ferry Electrification in the Maritime Sector. In Energies (Vol. 13, Issue 24). https://doi.org/10.3390/en13246506
  • Brost, R. D. (1998). Performance of valve-regulated lead acid batteries in EV1 extended series strings. Proceedings of the Annual Battery Conference on Applications and Advances, 25–29. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031675716&partnerID=40&md5=c2f407383f57af95ba2c53c0de88297f
  • Caruthers, F. (1994). Battery-management Circuitry Gets Smarte. Computer Design’s OEM Integration, May, 15–18.
  • Cates, R., & Richey, R. (1996). Charge NiCd and NiMH Batteries Properly. Electronic Design, June 10, 118–122.
  • Cheng, L., Acuna, P., Aguilera, R. P., Jiang, J., Flecther, J., & Baier, C. (2017). Model predictive control for Energy Management of a hybrid energy storage system in Light Rail Vehicles. 2017 11th IEEE International Conference on Compatibility, Power Electronics and Power Engineering, CPE-POWERENG 2017, 683–688. https://doi.org/10.1109/CPE.2017.7915255
  • Cheng, L., Wang, W., Wei, S., Lin, H., & Jia, Z. (2018). An improved energy management strategy for hybrid energy storage system in light rail vehicles. Energies, 11(2). https://doi.org/10.3390/en11020423
  • Da Moraes, C. G., Junior, S. L. B., Cavilha, P. P., Pacheco, A. L. S., Heldwein, M. L., & Waltrich, G. (2019). Multi-Port System for Storage and Management of Regenerative Braking Energy in Diesel-Electric Locomotives. 2019 IEEE 15th Brazilian Power Electronics Conference and 5th IEEE Southern Power Electronics Conference, COBEP/SPEC 2019. https://doi.org/10.1109/COBEP/SPEC44138.2019.9065725
  • Dikmen, İ C, & Karadağ, T. (2021). Onboard Battery Type Determination. 2021 5th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), 360–365. https://doi.org/10.1109/ISMSIT52890.2021.9604658
  • Dikmen, İsmail Can, & Karadağ, T. (2021). Lityum Tabanlı Piller için Pil Kimyasını Elektronik Olarak Belirleme Yöntemi (Patent No. Patent No:2021-GE-212728). https://portal.turkpatent.gov.tr/anonim/arastirma/patent/sonuc/dosya?patentAppNo=2021%2F005464&documentsTpye=all
  • Dikmen, İsmail Can, Seven, S., & Karadağ, T. (2018). A Numerical Study for Automatic Battery Identification in Hybrid Battery Packs for Electric Vehicles. Proceedings of the International 9th Automotive Technologies Congress, 825–832.
  • Ertugrul, N., Kani, A. P., Davies, M., Sbarbaro, D., & Morán, L. (2020). Status of Mine Electrification and Future Potentials. 2020 International Conference on Smart Grids and Energy Systems (SGES), 151–156. https://doi.org/10.1109/SGES51519.2020.00034
  • Fang, S., Wang, Y., Gou, B., & Xu, Y. (2020). Toward Future Green Maritime Transportation: An Overview of Seaport Microgrids and All-Electric Ships. IEEE Transactions on Vehicular Technology, 69(1), 207–219. https://doi.org/10.1109/TVT.2019.2950538
  • Freeman, D. (1995). Freeing Portables from Battery Tyranny. Electronic Design, July 10, 115–121.
  • Gao, F., Zhang, G., Shi, Y., & Qiang, G. (2019). Energy Management Strategy for New Type Urban Rail Vehicle Hybrid Power System . Tiedao Xuebao/Journal of the China Railway Society, 41(4), 48–54. https://doi.org/10.3969/j.issn.1001-8360.2019.04.007
  • Glover, M., & Kimberley, W. (1996). Kind of hush. Automotive Engineer (London), 21(6). https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030379484&partnerID=40&md5=41f683ae8437770cff7647810c7e9f4f
  • Goodenough, F. (1993). Battery-based Systems Demand Unique ICs. Electronic Design, 39(14), 47–61.
  • Goodenough, F. (1996a). Battery Management ICs Meet Diverse Needs. Electronic Design, August 19, 79–96.
  • Goodenough, F. (1996b). Microcontroller Grabs Data and Processes Analogue Data. Electronic Design, April 15, 139–144.
  • Groppi, D., Pfeifer, A., Garcia, D. A., Krajačić, G., & Duić, N. (2021). A review on energy storage and demand side management solutions in smart energy islands. Renewable and Sustainable Energy Reviews, 135, 110183. https://doi.org/https://doi.org/10.1016/j.rser.2020.110183
  • Haldar, S., Mondal, S., Mondal, A., & Banerjee, R. (2020). Battery Management System Using State of Charge Estimation: An IOT Based Approach. 2020 National Conference on Emerging Trends on Sustainable Technology and Engineering Applications (NCETSTEA), 1–5. https://doi.org/10.1109/NCETSTEA48365.2020.9119945
  • Hayden, C. L. (1981). Electric vehicle battery management. SAE Technical Papers. https://doi.org/10.4271/810417
  • Herrera, V. I., Gaztañaga, H., Milo, A., Saez-De-Ibarra, A., Etxeberria-Otadui, I., & Nieva, T. (2016). Optimal Energy Management and Sizing of a Battery-Supercapacitor-Based Light Rail Vehicle with a Multiobjective Approach. IEEE Transactions on Industry Applications, 52(4), 3367–3377. https://doi.org/10.1109/TIA.2016.2555790
  • Herrera, V., Milo, A., Gaztañaga, H., Etxeberria-Otadui, I., Villarreal, I., & Camblong, H. (2016). Adaptive energy management strategy and optimal sizing applied on a battery-supercapacitor based tramway. Applied Energy, 169, 831–845. https://doi.org/10.1016/j.apenergy.2016.02.079
  • Huang, K., Wang, Y., & Feng, J. (2021). Design of lithium-ion battery management system for mine electric vehicle. IOP Conference Series: Earth and Environmental Science, 680(1). https://doi.org/10.1088/1755-1315/680/1/012015 ISO 11898 Road vehicles — Controller area network (CAN). (n.d.). International Organization for Standardization (ISO). https://www.iso.org/standard/63648.html
  • Jeong, B., Jeon, H., Kim, S., Kim, J., & Zhou, P. (2020). Evaluation of the Lifecycle Environmental Benefits of Full Battery Powered Ships: Comparative Analysis of Marine Diesel and Electricity. In Journal of Marine Science and Engineering (Vol. 8, Issue 8). https://doi.org/10.3390/jmse8080580
  • Johnson, B. C. (1999). Environmental products that drive organizational change: General motor’s electric vehicle (EV1). Corporate Environmental Strategy, 6(2), 140–150. https://doi.org/https://doi.org/10.1016/S1066-7938(00)80024-X
  • Jones, G. (1991). Battery Management in Modem Portable Systems. Electronic Engineering, 43–52.
  • Jossen, A., Späth, V., Döring, H., & Garche, J. (1999). Reliable battery operation — a challenge for the battery management system. Journal of Power Sources, 84(2), 283–286. https://doi.org/https://doi.org/10.1016/S0378-7753(99)00329-8
  • Kang, J., Guo, Y., & Liu, J. (2020). Rule-based energy management strategies for a fuel cell-battery hybrid locomotive. 2020 IEEE 4th Conference on Energy Internet and Energy System Integration: Connecting the Grids Towards a Low-Carbon High-Efficiency Energy System, EI2 2020, 45–50. https://doi.org/10.1109/EI250167.2020.9346652
  • Kerridge, B. (1993). Battery Management ICs. EDN, May 13, 100–108.
  • Kim, T., Makwana, D., Adhikaree, A., Vagdoda, J. S., & Lee, Y. (2018). Cloud-Based Battery Condition Monitoring and Fault Diagnosis Platform for Large-Scale Lithium-Ion Battery Energy Storage Systems. In Energies (Vol. 11, Issue 1). https://doi.org/10.3390/en11010125
  • Krastevm, I., Mukherjee, N., Tricoli, P., & Hillmansen, S. (2015). New modular hybrid energy storage system and its control strategy for a fuel cell locomotive. 2015 17th European Conference on Power Electronics and Applications, EPE-ECCE Europe 2015. https://doi.org/10.1109/EPE.2015.7309371
  • Kruger, R., & Barrick, J. W. (1966). Battery ratings. SAE Technical Papers. https://doi.org/10.4271/660029
  • Kumar, D., & Zare, F. (2019). A Comprehensive Review of Maritime Microgrids: System Architectures, Energy Efficiency, Power Quality, and Regulations. IEEE Access, 7, 67249–67277. https://doi.org/10.1109/ACCESS.2019.2917082
  • Li, L., Huang, Z., Li, H., & Peng, J. (2017). A rapid cell voltage balancing scheme for supercapacitor based energy storage systems for urban rail vehicles. Electric Power Systems Research, 142, 329–340. https://doi.org/10.1016/j.epsr.2016.09.021
  • Li, S., & Zhao, P. (2021). Big data driven vehicle battery management method: A novel cyber-physical system perspective. Journal of Energy Storage, 33, 102064. https://doi.org/https://doi.org/10.1016/j.est.2020.102064
  • Lumertz, M. M., da Cruz, F. G., Lamperti, R. D., Pasa, L. A., & Marujo, D. (2021). Damaged Cell Location on Lithium-Ion Batteries Using Artificial Neural Networks BT - Control Applications in Modern Power System (A. K. Singh & M. Tripathy (Eds.); pp. 477–486). Springer Singapore.
  • Ma, S., Lin, M., Lin, T.-E., Lan, T., Liao, X., Maréchal, F., Van herle, J., Yang, Y., Dong, C., & Wang, L. (2021). Fuel cell-battery hybrid systems for mobility and off-grid applications: A review. Renewable and Sustainable Energy Reviews, 135, 110119. https://doi.org/https://doi.org/10.1016/j.rser.2020.110119
  • Maliniak, D. (1995). Intelligence Invades the Battery Pack. Electronic Design, January 9, 153–159.
  • Masaak, S., Kiyoak, K., Masahiko, K., Yoshiaki, T., & Hiroshige, S. (1998). Electronic Apparatus, Battery Management System, and Battery Management Method (Patent No. 5635813).
  • Mutarraf, M. U., Terriche, Y., Niazi, K. A., Vasquez, J. C., & Guerrero, J. M. (2018). Energy Storage Systems for Shipboard Microgrids—A Review. In Energies (Vol. 11, Issue 12). https://doi.org/10.3390/en11123492
  • Nguyen, H. P., Hoang, A. T., Nizetic, S., Nguyen, X. P., Le, A. T., Luong, C. N., Chu, V. D., & Pham, V. V. (2020). The electric propulsion system as a green solution for management strategy of CO2 emission in ocean shipping: A comprehensive review. International Transactions on Electrical Energy Systems, n/a(n/a), e12580. https://doi.org/https://doi.org/10.1002/2050-7038.12580
  • Noyce, R. N. (1959). Semiconductor device-and-lead structure (Patent No. US2981877A).
  • Nuchturee, C., Li, T., & Xia, H. (2020). Energy efficiency of integrated electric propulsion for ships – A review. Renewable and Sustainable Energy Reviews, 134, 110145. https://doi.org/https://doi.org/10.1016/j.rser.2020.110145
  • Peng, H., Li, J., Löwenstein, L., & Hameyer, K. (2020). A scalable, causal, adaptive energy management strategy based on optimal control theory for a fuel cell hybrid railway vehicle. Applied Energy, 267. https://doi.org/10.1016/j.apenergy.2020.114987
  • Pfeifer, A., Prebeg, P., & Duić, N. (2020). Challenges and opportunities of zero emission shipping in smart islands: A study of zero emission ferry lines. ETransportation, 3, 100048. https://doi.org/https://doi.org/10.1016/j.etran.2020.100048 Richards, P. (2002). A CAN Physical Layer Discussion (No. AN228). http://ww1.microchip.com/downloads/en/appnotes/00228a.pdf
  • Sarma, U., & Ganguly, S. (2020). Design optimisation for component sizing using multi-objective particle swarm optimisation and control of PEM fuel cellbattery hybrid energy system for locomotive application. IET Electrical Systems in Transportation, 10(1), 52–61. https://doi.org/10.1049/iet-est.2018.5053
  • Singirikonda, S., & Obulesu, Y. P. (2021). Advanced SOC and SOH Estimation Methods for EV Batteries—A Review BT - Advances in Automation, Signal Processing, Instrumentation, and Control (V. L. N. Komanapalli, N. Sivakumaran, & S. Hampannavar (Eds.); pp. 1963–1977). Springer Singapore.
  • Sivaraman, P., & Sharmeela, C. (2020). IoT-Based Battery Management System for Hybrid Electric Vehicle. In Artificial Intelligent Techniques for Electric and Hybrid Electric Vehicles (pp. 1–16). https://doi.org/https://doi.org/10.1002/9781119682035.ch1
  • Swager, A. W. (1995). Smart-Battery Technology: Power Management’s Missing Link. EDN, March 2, 47–64. Taylor, D. F., & Siwek, E. G. (1973). The dynamic characterization of lead-acid batteries for vehicle applications. SAE Technical Papers. https://doi.org/10.4271/730252
  • Wang, Y., Tian, J., Sun, Z., Wang, L., Xu, R., Li, M., & Chen, Z. (2020). A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems. Renewable and Sustainable Energy Reviews, 131, 110015. https://doi.org/https://doi.org/10.1016/j.rser.2020.110015 Wired wheels. (1996). Industry Week, 245(20), 50. https://www.scopus.com/inward/record.uri?eid=2-s2.0-8444245678&partnerID=40&md5=b72a966737c652d17b961ab2c9f98704
  • Xing, Y., Ma, E. W. M., Tsui, K. L., & Pecht, M. (2011). Battery Management Systems in Electric and Hybrid Vehicles. In Energies (Vol. 4, Issue 11). https://doi.org/10.3390/en4111840
  • Zhang, X., Liu, L., Dai, Y., & Lu, T. (2018). Experimental investigation on the online fuzzy energy management of hybrid fuel cell/battery power system for UAVs. International Journal of Hydrogen Energy, 43(21), 10094–10103. https://doi.org/https://doi.org/10.1016/j.ijhydene.2018.04.075
  • Ziegler, A., Oeser, D., Hein, T., Montesinos-Miracle, D., & Ackva, A. (2021). Reducing cell to cell variation of lithium-ion battery packs during operation. IEEE Access. https://doi.org/10.1109/ACCESS.2021.3057125
There are 54 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Teoman Karadağ 0000-0002-7682-7771

İsmail Can Dikmen 0000-0002-7747-7777

Project Number 2170454
Publication Date December 31, 2021
Published in Issue Year 2021

Cite

APA Karadağ, T., & Dikmen, İ. C. (2021). Yeni Nesil, Modüler ve Akıllı Batarya Yönetim Sistemi. Avrupa Bilim Ve Teknoloji Dergisi(32), 1103-1112. https://doi.org/10.31590/ejosat.1045564