Research Article
BibTex RIS Cite

İnorganik Malzeme Dolgulu PDMS Filmlerin Etanol, Bütanol, Aseton ve Su İçindeki Sorpsiyon Davranışı

Year 2021, , 897 - 900, 31.12.2021
https://doi.org/10.31590/ejosat.1046236

Abstract

Gözeneksiz bir membran boyunca taşınım mekanizmasının çözelti-difüzyon modeli ile açıklandığı pervaporasyon yöntemi, su-organik ve organik-organik karışımların ayrılmasında kullanılabilmektedir. Polimerik bir membranın sorpsiyon davranışı, çözücü ve polimer özelliklerine bağlı olarak, membran taşınımında önemli bir rol oynar. Diğer tüm membran proseslerinde olduğu gibi pervaporasyon yönteminde de membran anahtar bileşen olduğundan, sıvı karışımdan en az bir bileşeni seçici olarak ayırabilen uygun membran malzemesinin belirlenmelidir. Etanol, bütanol ve aseton birçok endüstriyel uygulamada yaygın olarak kullanılmaktadır. PDMS, organik-su karışımlarından organiklerin geri kazanılmasında veya organik-organik karışımların ayrılmasında sıklıkla kullanılmaktadır. PDMS, yüksek zincir hareketliliği, düşük mekanik direnç ve düşük seçicilik değerleri verdiğinden özelliklerinin iyileştirilmesi gerekmektedir. Bu çalışmada dolgusuz PDMS, PDMS/TiO2, PDMS/NaY ve PDMS/5A karışık matris filmler hazırlanmış ve PDMS filmlerin 30,40 ve 50°C sıcaklıklarda farklı kimyasal maddelerdeki sorpsiyon davranışları incelenmiştir.

Project Number

Yok

References

  • Feng, X. H. (1997). Liquid Separation by Membrane Pervaporation: A Review. Industrial&Engineering Chemistry Research, 36(4), 1048-1066.
  • Huang, R. (1991). Pervaporation Membrane Separation Processes. Membrane Science and Technology, 111(1).
  • Jyoti, G. K. (2015). Review on Pervaporation: Theory, Membrane Performance, and Application to Intensification of Esterification Reaction. 2015, 1-24.
  • Keskin, R., (2021). Development of Mixed Matrix Membrane for CO2 Separation. MSc Thesis (in Turkish), 95.
  • Kilic, E.C. (2021). Pervaporation Modeling Studies for Separation of Aqueous Organic Mixtures and Vapor Liquid Equilibrium Calculations. PhD Thesis (in Turkish), 100.
  • Lipnizki, F. T. (2001). Modelling of Pervaporation: Models to Analyze and Predict The Mass Transport in Pervaporation. Seperation and Purification Methods, 30(1), 49-125.
  • Mulder, M. F. (1985). Preferential sorption versus preferential permeability in pervaporation. Journal of Membrane Science, 22(2-3), 155-173.
  • Mulder, M. S. (1986). Pervaporation, Solubility Aspects of the Solution-Diffusion Model. Separation and Purification Methods, 15(1), 1-19.
  • Pereira, C. R. (2006). Pervaporative recovery of volatile aroma compounds from fruit juices-A Review. Journal of Membrane Science, 274, 1-23.
  • Rezakazemi, M., Vatani, A., Mohammadi, T. (2015). Synergistic interactions between POSS and fumed silica and their effect on the properties of crosslinked PDMS nanocomposite membranes. RSC Advances, 5, 82460-82470.
  • Senol, S., Ekinci, B., Salt, I., Tirnakci, B., Salt, Y. (2021). Pervaporation separation of ethylacetate-ethanol mixtures using zeolite 13X-filled poly(dimethylsiloxane) membrane. Chemical Engineering Communications, DOI: 10.1080/00986445.2021.1940155 (early access).
  • Tanaka, S., Chao, Y., Araki, S., Miyake, Y. (2010). Pervaporation characteristics of pore-filling PDMS/PMHS membranes for recovery of ethylacetate from aqueous solution. Journal of Membrane Science, 348, 383-388.
  • Uragami, T., Wakita, D., Miyata, T. (2010). Dehydration of an azeotrope of ethanol/water by sodium carboxymethyl cellulose membranes cross-linked with organic or inorganic cross-linker. Express Polym. Lett., 4, 681-691.
  • Wolf, P.M., S.-Beugelaar, G.B., Hunziker, P. (2018). PDMS with designer functionalities-Properties, modifications strategies, and applications. Progress in Polymer Science, 83, 97–134.

Sorption Behaviour of Inorganic Material Filled-PDMS Films in Ethanol, Butanol, Acetone and Water

Year 2021, , 897 - 900, 31.12.2021
https://doi.org/10.31590/ejosat.1046236

Abstract

The pervaporation method in which the transport mechanism through a nonporous membrane is explained by the solution-diffusion model can be used for the separation of water-organic and organic-organic mixtures. The sorption behaviour of a polymeric membrane plays important role in membrane transport, depending on the solvent and polymer properties. Since the membrane itself is the key component in the pervaporation method, as with all other membrane processes, it is necessary to determine suitable membrane material that can selectively separate at least one component from a liquid mixture. Ethanol, butanol and acetone are widely used in many industrial applications. PDMS is one of the polymers that is frequently used in the recovery of organics from organic-water mixtures or the separation of organic-organic mixtures. PDMS gives high chain mobility, low mechanical resistance and low selectivity values. For this reason, its properties need to be improved. In this study, unfilled PDMS, PDMS/TiO2, PDMS/NaY and PDMS/5A mixed matrix films were prepared, and the sorption behaviours of prepared PDMS films in different chemical substances at temperatures of 30,40 and 50°C were investigated.

Supporting Institution

Yok

Project Number

Yok

Thanks

The authors are thankful to Ravago Petrochemicals Inc. for providing PDMS and its crosslinker.

References

  • Feng, X. H. (1997). Liquid Separation by Membrane Pervaporation: A Review. Industrial&Engineering Chemistry Research, 36(4), 1048-1066.
  • Huang, R. (1991). Pervaporation Membrane Separation Processes. Membrane Science and Technology, 111(1).
  • Jyoti, G. K. (2015). Review on Pervaporation: Theory, Membrane Performance, and Application to Intensification of Esterification Reaction. 2015, 1-24.
  • Keskin, R., (2021). Development of Mixed Matrix Membrane for CO2 Separation. MSc Thesis (in Turkish), 95.
  • Kilic, E.C. (2021). Pervaporation Modeling Studies for Separation of Aqueous Organic Mixtures and Vapor Liquid Equilibrium Calculations. PhD Thesis (in Turkish), 100.
  • Lipnizki, F. T. (2001). Modelling of Pervaporation: Models to Analyze and Predict The Mass Transport in Pervaporation. Seperation and Purification Methods, 30(1), 49-125.
  • Mulder, M. F. (1985). Preferential sorption versus preferential permeability in pervaporation. Journal of Membrane Science, 22(2-3), 155-173.
  • Mulder, M. S. (1986). Pervaporation, Solubility Aspects of the Solution-Diffusion Model. Separation and Purification Methods, 15(1), 1-19.
  • Pereira, C. R. (2006). Pervaporative recovery of volatile aroma compounds from fruit juices-A Review. Journal of Membrane Science, 274, 1-23.
  • Rezakazemi, M., Vatani, A., Mohammadi, T. (2015). Synergistic interactions between POSS and fumed silica and their effect on the properties of crosslinked PDMS nanocomposite membranes. RSC Advances, 5, 82460-82470.
  • Senol, S., Ekinci, B., Salt, I., Tirnakci, B., Salt, Y. (2021). Pervaporation separation of ethylacetate-ethanol mixtures using zeolite 13X-filled poly(dimethylsiloxane) membrane. Chemical Engineering Communications, DOI: 10.1080/00986445.2021.1940155 (early access).
  • Tanaka, S., Chao, Y., Araki, S., Miyake, Y. (2010). Pervaporation characteristics of pore-filling PDMS/PMHS membranes for recovery of ethylacetate from aqueous solution. Journal of Membrane Science, 348, 383-388.
  • Uragami, T., Wakita, D., Miyata, T. (2010). Dehydration of an azeotrope of ethanol/water by sodium carboxymethyl cellulose membranes cross-linked with organic or inorganic cross-linker. Express Polym. Lett., 4, 681-691.
  • Wolf, P.M., S.-Beugelaar, G.B., Hunziker, P. (2018). PDMS with designer functionalities-Properties, modifications strategies, and applications. Progress in Polymer Science, 83, 97–134.
There are 14 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Enver Can Kılıç This is me 0000-0003-1760-1542

Yavuz Salt 0000-0002-1375-6953

Project Number Yok
Publication Date December 31, 2021
Published in Issue Year 2021

Cite

APA Kılıç, E. C., & Salt, Y. (2021). Sorption Behaviour of Inorganic Material Filled-PDMS Films in Ethanol, Butanol, Acetone and Water. Avrupa Bilim Ve Teknoloji Dergisi(32), 897-900. https://doi.org/10.31590/ejosat.1046236