Research Article
BibTex RIS Cite

Hibrit sol-jel matrisine katkılı yeni bir korozyon inhibitörü olarak bakteriyel eumelanin polimerinin antikorozif performansı

Year 2022, , 9 - 16, 07.05.2022
https://doi.org/10.31590/ejosat.1047553

Abstract

Melaninler, doğada mikroorganizmalardan insanlara kadar çok çeşitli canlı gruplarında yaygın olarak dağılmış bir organik polimer grubudur. Neredeyse tüm canlı gruplarında bulunan bu pigmentler, antioksidan, antimikrobiyal, antivenin, antienflamatuar, radyoprotektif, fotokoruyucu vb. birçok farklı özelliğe sahiptir. Bu çalışmada, Streptomyces parvus BSB49 suşundan saflaştırılan eumelanin polimerinin korozyon önleyici performansının belirlenmesi amaçlanmıştır. Bu amaçla, eumelanini bir doping ajanı olarak dahil etmek için tetraetil ortosilikat ve 3-aminopropiltrietoksisilan kullanılarak hibrit sol-jel matrisi sentezlenmiştir. Bu işlemde Si ≤ %0,16, Mn ≤ %0,15, Mg ≤ %0,03, Al ≤ %0,06, P ≤ %0,01, Na ≤ %0,02 ve Ca ≤ %0,01 bileşimine sahip yumuşak kaplamaları uygulamak için çelik levhalar kullanılmıştır. Substrat kaplanmış numunelerin korozyon davranışını araştırmak için 0,5 M HC1 korozyon ortamı ile yüklenen üç elektrotlu bir hücre düzeni kullanılmıştır. Ömelaninin doping konsantrasyonundaki artışla korozyon hızı azalmıştır. Böylece elektrokimyasal empedans spektroskopisi ve potansiyodinamik polarizasyon ölçümleri ile elde edilen sonuçlar, Streptomyces parvus BSB49 suşu kullanılarak üretilen eumelanin pigmentinin antikorozif özelliklere sahip olduğunu ortaya koymuştur.

References

  • Banerjee A., Supakar S., Banerjee R. Melanin from the nitrogen fixing bacterium Azotobacter chroococcum: a spectroscopic characterization. PLoS One. 2014;9(1):e84574. https://doi.org/10.1371/journ al.pone.0084574
  • Ryu I.Y., Choi I., Ullah S., Choi H., Chun P., Moon H.R. Tyrosinase Inhibitory Effects of Derivatives of (E)‐2‐(Substituted Benzylidene)‐3, 4‐Dihydronaphthalen‐1 (2 H)‐One. Bulletin of the Korean Chemical Society. 2020;41(12):1134-1139. https://doi.org/10.1002/bkcs.12122
  • Dwyer T., Muller H.K., Blizzard L., Ashbolt R., Phillips G. The use of spectrophotometry to estimate melanin density in Caucasians. Cancer Epidemiology and Prevention Biomarkers. 1998;7(3):203-206.
  • d'Ischia M., Wakamatsu K., Cicoira F., Di Mauro E., Garcia‐Borron J.C., Commo S., Ito, S. Melanins and melanogenesis: from pigment cells to human health and technological applications. Pigment cell & melanoma research. 2015;28(5):520-544.
  • Riley P.A. Melanin. International Journal of Biochemistry & Cell Biology. 1997;29:1235–1239
  • Land E.J., Ramsden C.A., Riley P.A. Quinone chemistry and melanogenesis. Methods in Enzymology. 2004;378:88–109
  • Eisenman H.C., Casadevall A. Synthesis and assembly of fungal melanin. Applied Microbiology and Biotechnology. 2012;93(3):931-940.
  • Langfelder K., Streibel M., Jahn B., Haase G., Brakhage A.A. Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genetics and Biology. 2003;38:143–158
  • Prota G. Recent advances in the chemistry of melanogenesis in mammals. Journal of Investigative Dermatology. 1980;75(1):122-127.
  • Ito S. A chemist's view of melanogenesis. Pigment cell research. 2003;16(3):230-236.
  • Fedorow H., Tribl F., Halliday G., Gerlach M., Riederer P., Double K.L. Neuromelanin in human dopamine neurons: comparison with peripheral melanins and relevance to Parkinson's disease. Progress in Neurobiology. 2005;75(2):109-124. https://doi.org/10.1016/j.pneurobio.2005.02.001
  • Zucca F.A., Segura-Aguilar J., Ferrari E., Muñoz P., Paris I., Sulzer D., Zecca L. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson's disease. Progress in Neurobiology. 2017;155:96-119. https://doi.org/10.1016/j.pneurobio.2015.09.012
  • Płonka P., Grabacka M. Melanin synthesis in microorganisms: biotechnological and medical aspects. Acta Biochimica Polonica. 2006;53(3):429-443
  • McCallum N.C., Son F.A., Clemons T.D., Weigand S.J., Gnanasekaran K., Battistella C., Gianneschi N.C. Allomelanin: A biopolymer of intrinsic microporosity. Journal of the American Chemical Society. 2021;143(10):4005-4016. https://doi.org/10.1021/jacs.1c00748
  • Ruzafa C., Solano F., Sanchez-Amat A. The protein encoded by the Shewanella colwelliana melA gene is a p-hydroxyphenylpyruvate dioxygenase. FEMS microbiology letters. 1994;124(2):179-184.
  • Turick C.E., Knox A.S., Becnel J.M., Ekechukwu A.A., Milliken C.E. Properties and function of pyomelanin. Biopolymers. 2010;449:72
  • Bayram S. Production, purification, and characterization of Streptomyces sp. Strain MPPS2 extracellular pyomelanin pigment. Archives of Microbiology. 2021;203:4419–4426 https://doi.org/10.1007/s00203-021-02437-w
  • Solano F. Melanin and melanin-related polymers as materials with biomedical and biotechnological applications—cuttlefish ink and mussel foot proteins as inspired biomolecules. International journal of molecular sciences. 2017;18(7):1561.
  • Venil C.K., Zakaria Z.A., Ahmad W.A. Bacterial pigments and their applications. Process Biochemistry. 2013;48(7):1065–1079. https://doi.org/ 10.1016/j.procbio.2013.06.006
  • Zerrad A., Anissi J., Ghanam J., Sendide K., El Hassouni M. Antioxidant and antimicrobial activities of melanin produced by a Pseudomonas balearica strain. Journal of Biotechnology Letters. 2014;5(1):87-94.
  • Łopusiewicz Ł. The isolation, purification and analysis of the melanin pigment extracted from Armillaria mellea rhizomorphs. World Scientific News. 2018;100:135-153.
  • Teplyakova T., Kosogova T. Fungal bioactive compounds with antiviral effect. Journal of Pharmacy and Pharmacology. 2015;3(8):357.
  • Hung Y.C., Sava V., Hong M.Y., Huang G. S. Inhibitory effects on phospholipase A2 and antivenin activity of melanin extracted from Thea sinensis Linn. Life sciences. 2004;74(16):2037-2047.
  • Page S., Chandhoke V., Baranova A. Melanin and melanogenesis in adipose tissue: possible mechanisms for abating oxidative stress and inflammation?. Obesity reviews. 2011;12(5):e21-e31.
  • Sava V., Hung Y., Blagodarsky V., Hong M.Y., Huang, G. The liverprotecting activity of melanin-like pigment derived from black tea. Food Research International. 2003;36(5):505–511. https://doi.org/10.1016/S0963- 9969(02)00199-0
  • Sava V.M., Galkin B.N., Hong M.Y., Yang P.C., Huang G.S. A novel melanin-like pigment derived from black tea leaves with immunestimulating activity. Food Research International. 2001;34:337–43.
  • Bayram S., Dengiz C., Gerçek Y.C., Cetin I., Topcul M.R. Bioproduction, structure elucidation and in vitro antiproliferative effect of eumelanin pigment from Streptomyces parvus BSB49. Archives of Microbiology. 2020;202(9):2401-2409. https://doi.org/10.1007/s00203-020-01956-2
  • Margalida A., Negro J.J., Galván I. Melanin-based color variation in the bearded vulture suggests a thermoregulatory function. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2008;149(1):87-91.
  • Tarangini K., Mishra S. Production of melanin by soil microbial isolate on fruit waste extract: two step optimization of key parameters. Biotechnology Reports, 2014;4:39-146.
  • Fan Q., Cheng K., Hu X., Ma X., Zhang R., Yang M., Cheng Z. Transferring biomarker into molecular probe: melanin nanoparticle as a naturally active platform for multimodality imaging. Journal of the American Chemical Society. 2014;136(43):15185-15194.
  • Gogurla N., Roy B., Min K., Park J.Y., Kim S. A Skin‐Inspired, Interactive, and Flexible Optoelectronic Device with Hydrated Melanin Nanoparticles in a Protein Hydrogel–Elastomer Hybrid. Advanced Materials Technologies, 2020;5(4):1900936.
  • Schweitzer A.D., Revskaya E., Chu P., Pazo V., Friedman M., Nosanchuk J.D., Dadachova E. Melanin-covered nanoparticles for protection of bone marrow during radiation therapy of cancer. International Journal of Radiation Oncology* Biology* Physics. 2010;78(5):1494-1502.
  • Araújo M., Viveiros R., Correia T.R., Correia I.J., Bonifácio V.D., Casimiro T., Aguiar-Ricardo A. Natural melanin: A potential pH-responsive drug release device. International journal of pharmaceutics. 2014;469(1):140-145.
  • Di Mauro E., Rho D., Santato C. Biodegradation of bio-sourced and synthetic organic electronic materials towards green organic electronics. Nature communications. 2021;12:1-10. https://doi.org/10.1038/s41467-021-23227-4
  • Şahin N., Uğur A. Investigation of the antimicrobial activity of some Streptomyces isolates. Turkish Journal of Biology. 2003;27(2):79-84.
  • El-Naggar N.A., El-Ewasy S.M. Bioproduction, characterization, anticancer and antioxidant activities of extracellular melanin pigment produced by newly isolated microbial cell factories Streptomyces glaucescens NEAE-H. Scientific Reports 2017;7:42129. https://doi.org/10.1038/srep42129
  • Wu Y., Du Z., Wang H., Cheng X. Synthesis of aqueous highly branched silica sol as underlying crosslinker for corrosion protection. Progress in Organic Coatings. 2017;111:381-388.
  • Hamidon T.S., Ishak, N.A., Hussin, M.H. Enhanced corrosion inhibition of low carbon steel in aqueous sodium chloride employing sol–gel-based hybrid silanol coatings. Journal of Sol-Gel Science and Technology. 2021;97(3):556-571.
  • Fayomi O.S.I., Akande I.G., Popoola A.P.I., Molifi H. Potentiodynamic polarization studies of Cefadroxil and Dicloxacillin drugs on the corrosion susceptibility of aluminium AA6063 in 0.5 M nitric acid. Journal of Materials Research and Technology, 2019;8(3):3088-3096.
  • Tasić Ž.Z., Mihajlović M.B.P., Radovanović M.B., Antonijević M.M. Electrochemical investigations of copper corrosion inhibition by azithromycin in 0.9% NaCl. Journal of Molecular Liquids. 2018;265:687-692.
  • Kirtay S. Preparation of hybrid silica sol–gel coatings on mild steel surfaces and evaluation of their corrosion resistance. Progress in Organic Coatings. 2014;77(11):1861-1866.
  • Sharma P., Pandey P M. Corrosion rate modelling of biodegradable porous iron scaffold considering the effect of porosity and pore morphology. Materials Science and Engineering: C. 2019;103:109776.
  • Ishak N.A., Hamidon T.S., Zi-Hui T., Hussin M.H. Extracts of curcumin-incorporated hybrid sol–gel coatings for the corrosion mitigation of mild steel in 0.5 M HCl. Journal of Coatings Technology and Research, 2020;17(6):1515-1535.
  • Ali S.M., Emran K.M., Messali M. Improved protection performance of modified sol-gel coatings with pyridinium-based ionic liquid for cast iron corrosion in 0.5 M HCl solution. Progress in Organic Coatings. 2019;130:226-234.
  • Ćurković L., Ćurković H.O., Salopek S., Renjo M.M., Šegota S. Enhancement of corrosion protection of AISI 304 stainless steel by nanostructured sol–gel TiO2 films. Corrosion Science. 2013;77:176-184.
  • Ateş S., Baran-Aydın E., Yazıcı B. The corrosion behavior of the SnO2-coated mild steel in HCl solution at different temperature. Journal of Adhesion Science and Technology. 2021;35(4):419-435.
  • Hamidon T.S., Hussin M.H. Susceptibility of hybrid sol-gel (TEOS-APTES) doped with caffeine as potent corrosion protective coatings for mild steel in 3.5 wt.% NaCl. Progress in Organic Coatings. 2020;140:105478.
  • Prasad A.R., Shamsheera K.O., Joseph A. Electrochemical and surface characterization of mild steel with corrosion resistant zirconia network fabricated by aqueous sol-gel technique. Journal of the Indian Chemical Society. 2021;98(4):100052.
  • Pourhashem S., Afshar A. Double layer bioglass-silica coatings on 316L stainless steel by sol–gel method. Ceramics International. 2014;40(1):993-1000.
  • John B., Paulraj S., Mathew J. The role of shielding gas on mechanical, metallurgical and corrosion properties of corten steel welded joints of Railway Coaches using GMAW. Advances in Science and Technology. Research Journal. 2016;10(32):156-168
  • Shaw P., Obot I.B., Yadav M. Functionalized 2-hydrazinobenzothiazole with carbohydrates as a corrosion inhibitor: electrochemical, XPS, DFT and Monte Carlo simulation studies. Materials Chemistry Frontiers. 2019;3(5):931-940.
  • Abd El-Lateef H.M., Khalaf M.M. Corrosion resistance of ZrO2–TiO2 nanocomposite multilayer thin films coated on carbon steel in hydrochloric acid solution. Materials Characterization. 2015;108:29-41.

Anticorrosive performance of bacterial eumelanin polymer as a novel corrosion inhibitor doped into hybrid sol-gel matrix

Year 2022, , 9 - 16, 07.05.2022
https://doi.org/10.31590/ejosat.1047553

Abstract

Öz
Melaninler, doğada mikroorganizmalardan insanlara kadar çok çeşitli canlı gruplarında yaygın olarak dağılmış bir organik polimer grubudur. Neredeyse tüm canlı gruplarında bulunan bu pigmentler, antioksidan, antimikrobiyal, antivenin, antienflamatuar, radyoprotektif, fotokoruyucu vb. birçok farklı özelliğe sahiptir. Bu çalışmada, Streptomyces parvus BSB49 suşundan saflaştırılan eumelanin polimerinin korozyon önleyici performansının belirlenmesi amaçlanmıştır. Bu amaçla, eumelanini bir doping ajanı olarak dahil etmek için tetraetil ortosilikat ve 3-aminopropiltrietoksisilan kullanılarak hibrit sol-jel matrisi sentezlenmiştir. Bu işlemde Si ≤ %0,16, Mn ≤ %0,15, Mg ≤ %0,03, Al ≤ %0,06, P ≤ %0,01, Na ≤ %0,02 ve Ca ≤ %0,01 bileşimine sahip yumuşak kaplamaları uygulamak için çelik levhalar kullanılmıştır. Substrat kaplanmış numunelerin korozyon davranışını araştırmak için 0,5 M HC1 korozyon ortamı ile yüklenen üç elektrotlu bir hücre düzeni kullanılmıştır. Ömelaninin doping konsantrasyonundaki artışla korozyon hızı azalmıştır. Böylece elektrokimyasal empedans spektroskopisi ve potansiyodinamik polarizasyon ölçümleri ile elde edilen sonuçlar, Streptomyces parvus BSB49 suşu kullanılarak üretilen eumelanin pigmentinin antikorozif özelliklere sahip olduğunu ortaya koymuştur.

References

  • Banerjee A., Supakar S., Banerjee R. Melanin from the nitrogen fixing bacterium Azotobacter chroococcum: a spectroscopic characterization. PLoS One. 2014;9(1):e84574. https://doi.org/10.1371/journ al.pone.0084574
  • Ryu I.Y., Choi I., Ullah S., Choi H., Chun P., Moon H.R. Tyrosinase Inhibitory Effects of Derivatives of (E)‐2‐(Substituted Benzylidene)‐3, 4‐Dihydronaphthalen‐1 (2 H)‐One. Bulletin of the Korean Chemical Society. 2020;41(12):1134-1139. https://doi.org/10.1002/bkcs.12122
  • Dwyer T., Muller H.K., Blizzard L., Ashbolt R., Phillips G. The use of spectrophotometry to estimate melanin density in Caucasians. Cancer Epidemiology and Prevention Biomarkers. 1998;7(3):203-206.
  • d'Ischia M., Wakamatsu K., Cicoira F., Di Mauro E., Garcia‐Borron J.C., Commo S., Ito, S. Melanins and melanogenesis: from pigment cells to human health and technological applications. Pigment cell & melanoma research. 2015;28(5):520-544.
  • Riley P.A. Melanin. International Journal of Biochemistry & Cell Biology. 1997;29:1235–1239
  • Land E.J., Ramsden C.A., Riley P.A. Quinone chemistry and melanogenesis. Methods in Enzymology. 2004;378:88–109
  • Eisenman H.C., Casadevall A. Synthesis and assembly of fungal melanin. Applied Microbiology and Biotechnology. 2012;93(3):931-940.
  • Langfelder K., Streibel M., Jahn B., Haase G., Brakhage A.A. Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genetics and Biology. 2003;38:143–158
  • Prota G. Recent advances in the chemistry of melanogenesis in mammals. Journal of Investigative Dermatology. 1980;75(1):122-127.
  • Ito S. A chemist's view of melanogenesis. Pigment cell research. 2003;16(3):230-236.
  • Fedorow H., Tribl F., Halliday G., Gerlach M., Riederer P., Double K.L. Neuromelanin in human dopamine neurons: comparison with peripheral melanins and relevance to Parkinson's disease. Progress in Neurobiology. 2005;75(2):109-124. https://doi.org/10.1016/j.pneurobio.2005.02.001
  • Zucca F.A., Segura-Aguilar J., Ferrari E., Muñoz P., Paris I., Sulzer D., Zecca L. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson's disease. Progress in Neurobiology. 2017;155:96-119. https://doi.org/10.1016/j.pneurobio.2015.09.012
  • Płonka P., Grabacka M. Melanin synthesis in microorganisms: biotechnological and medical aspects. Acta Biochimica Polonica. 2006;53(3):429-443
  • McCallum N.C., Son F.A., Clemons T.D., Weigand S.J., Gnanasekaran K., Battistella C., Gianneschi N.C. Allomelanin: A biopolymer of intrinsic microporosity. Journal of the American Chemical Society. 2021;143(10):4005-4016. https://doi.org/10.1021/jacs.1c00748
  • Ruzafa C., Solano F., Sanchez-Amat A. The protein encoded by the Shewanella colwelliana melA gene is a p-hydroxyphenylpyruvate dioxygenase. FEMS microbiology letters. 1994;124(2):179-184.
  • Turick C.E., Knox A.S., Becnel J.M., Ekechukwu A.A., Milliken C.E. Properties and function of pyomelanin. Biopolymers. 2010;449:72
  • Bayram S. Production, purification, and characterization of Streptomyces sp. Strain MPPS2 extracellular pyomelanin pigment. Archives of Microbiology. 2021;203:4419–4426 https://doi.org/10.1007/s00203-021-02437-w
  • Solano F. Melanin and melanin-related polymers as materials with biomedical and biotechnological applications—cuttlefish ink and mussel foot proteins as inspired biomolecules. International journal of molecular sciences. 2017;18(7):1561.
  • Venil C.K., Zakaria Z.A., Ahmad W.A. Bacterial pigments and their applications. Process Biochemistry. 2013;48(7):1065–1079. https://doi.org/ 10.1016/j.procbio.2013.06.006
  • Zerrad A., Anissi J., Ghanam J., Sendide K., El Hassouni M. Antioxidant and antimicrobial activities of melanin produced by a Pseudomonas balearica strain. Journal of Biotechnology Letters. 2014;5(1):87-94.
  • Łopusiewicz Ł. The isolation, purification and analysis of the melanin pigment extracted from Armillaria mellea rhizomorphs. World Scientific News. 2018;100:135-153.
  • Teplyakova T., Kosogova T. Fungal bioactive compounds with antiviral effect. Journal of Pharmacy and Pharmacology. 2015;3(8):357.
  • Hung Y.C., Sava V., Hong M.Y., Huang G. S. Inhibitory effects on phospholipase A2 and antivenin activity of melanin extracted from Thea sinensis Linn. Life sciences. 2004;74(16):2037-2047.
  • Page S., Chandhoke V., Baranova A. Melanin and melanogenesis in adipose tissue: possible mechanisms for abating oxidative stress and inflammation?. Obesity reviews. 2011;12(5):e21-e31.
  • Sava V., Hung Y., Blagodarsky V., Hong M.Y., Huang, G. The liverprotecting activity of melanin-like pigment derived from black tea. Food Research International. 2003;36(5):505–511. https://doi.org/10.1016/S0963- 9969(02)00199-0
  • Sava V.M., Galkin B.N., Hong M.Y., Yang P.C., Huang G.S. A novel melanin-like pigment derived from black tea leaves with immunestimulating activity. Food Research International. 2001;34:337–43.
  • Bayram S., Dengiz C., Gerçek Y.C., Cetin I., Topcul M.R. Bioproduction, structure elucidation and in vitro antiproliferative effect of eumelanin pigment from Streptomyces parvus BSB49. Archives of Microbiology. 2020;202(9):2401-2409. https://doi.org/10.1007/s00203-020-01956-2
  • Margalida A., Negro J.J., Galván I. Melanin-based color variation in the bearded vulture suggests a thermoregulatory function. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2008;149(1):87-91.
  • Tarangini K., Mishra S. Production of melanin by soil microbial isolate on fruit waste extract: two step optimization of key parameters. Biotechnology Reports, 2014;4:39-146.
  • Fan Q., Cheng K., Hu X., Ma X., Zhang R., Yang M., Cheng Z. Transferring biomarker into molecular probe: melanin nanoparticle as a naturally active platform for multimodality imaging. Journal of the American Chemical Society. 2014;136(43):15185-15194.
  • Gogurla N., Roy B., Min K., Park J.Y., Kim S. A Skin‐Inspired, Interactive, and Flexible Optoelectronic Device with Hydrated Melanin Nanoparticles in a Protein Hydrogel–Elastomer Hybrid. Advanced Materials Technologies, 2020;5(4):1900936.
  • Schweitzer A.D., Revskaya E., Chu P., Pazo V., Friedman M., Nosanchuk J.D., Dadachova E. Melanin-covered nanoparticles for protection of bone marrow during radiation therapy of cancer. International Journal of Radiation Oncology* Biology* Physics. 2010;78(5):1494-1502.
  • Araújo M., Viveiros R., Correia T.R., Correia I.J., Bonifácio V.D., Casimiro T., Aguiar-Ricardo A. Natural melanin: A potential pH-responsive drug release device. International journal of pharmaceutics. 2014;469(1):140-145.
  • Di Mauro E., Rho D., Santato C. Biodegradation of bio-sourced and synthetic organic electronic materials towards green organic electronics. Nature communications. 2021;12:1-10. https://doi.org/10.1038/s41467-021-23227-4
  • Şahin N., Uğur A. Investigation of the antimicrobial activity of some Streptomyces isolates. Turkish Journal of Biology. 2003;27(2):79-84.
  • El-Naggar N.A., El-Ewasy S.M. Bioproduction, characterization, anticancer and antioxidant activities of extracellular melanin pigment produced by newly isolated microbial cell factories Streptomyces glaucescens NEAE-H. Scientific Reports 2017;7:42129. https://doi.org/10.1038/srep42129
  • Wu Y., Du Z., Wang H., Cheng X. Synthesis of aqueous highly branched silica sol as underlying crosslinker for corrosion protection. Progress in Organic Coatings. 2017;111:381-388.
  • Hamidon T.S., Ishak, N.A., Hussin, M.H. Enhanced corrosion inhibition of low carbon steel in aqueous sodium chloride employing sol–gel-based hybrid silanol coatings. Journal of Sol-Gel Science and Technology. 2021;97(3):556-571.
  • Fayomi O.S.I., Akande I.G., Popoola A.P.I., Molifi H. Potentiodynamic polarization studies of Cefadroxil and Dicloxacillin drugs on the corrosion susceptibility of aluminium AA6063 in 0.5 M nitric acid. Journal of Materials Research and Technology, 2019;8(3):3088-3096.
  • Tasić Ž.Z., Mihajlović M.B.P., Radovanović M.B., Antonijević M.M. Electrochemical investigations of copper corrosion inhibition by azithromycin in 0.9% NaCl. Journal of Molecular Liquids. 2018;265:687-692.
  • Kirtay S. Preparation of hybrid silica sol–gel coatings on mild steel surfaces and evaluation of their corrosion resistance. Progress in Organic Coatings. 2014;77(11):1861-1866.
  • Sharma P., Pandey P M. Corrosion rate modelling of biodegradable porous iron scaffold considering the effect of porosity and pore morphology. Materials Science and Engineering: C. 2019;103:109776.
  • Ishak N.A., Hamidon T.S., Zi-Hui T., Hussin M.H. Extracts of curcumin-incorporated hybrid sol–gel coatings for the corrosion mitigation of mild steel in 0.5 M HCl. Journal of Coatings Technology and Research, 2020;17(6):1515-1535.
  • Ali S.M., Emran K.M., Messali M. Improved protection performance of modified sol-gel coatings with pyridinium-based ionic liquid for cast iron corrosion in 0.5 M HCl solution. Progress in Organic Coatings. 2019;130:226-234.
  • Ćurković L., Ćurković H.O., Salopek S., Renjo M.M., Šegota S. Enhancement of corrosion protection of AISI 304 stainless steel by nanostructured sol–gel TiO2 films. Corrosion Science. 2013;77:176-184.
  • Ateş S., Baran-Aydın E., Yazıcı B. The corrosion behavior of the SnO2-coated mild steel in HCl solution at different temperature. Journal of Adhesion Science and Technology. 2021;35(4):419-435.
  • Hamidon T.S., Hussin M.H. Susceptibility of hybrid sol-gel (TEOS-APTES) doped with caffeine as potent corrosion protective coatings for mild steel in 3.5 wt.% NaCl. Progress in Organic Coatings. 2020;140:105478.
  • Prasad A.R., Shamsheera K.O., Joseph A. Electrochemical and surface characterization of mild steel with corrosion resistant zirconia network fabricated by aqueous sol-gel technique. Journal of the Indian Chemical Society. 2021;98(4):100052.
  • Pourhashem S., Afshar A. Double layer bioglass-silica coatings on 316L stainless steel by sol–gel method. Ceramics International. 2014;40(1):993-1000.
  • John B., Paulraj S., Mathew J. The role of shielding gas on mechanical, metallurgical and corrosion properties of corten steel welded joints of Railway Coaches using GMAW. Advances in Science and Technology. Research Journal. 2016;10(32):156-168
  • Shaw P., Obot I.B., Yadav M. Functionalized 2-hydrazinobenzothiazole with carbohydrates as a corrosion inhibitor: electrochemical, XPS, DFT and Monte Carlo simulation studies. Materials Chemistry Frontiers. 2019;3(5):931-940.
  • Abd El-Lateef H.M., Khalaf M.M. Corrosion resistance of ZrO2–TiO2 nanocomposite multilayer thin films coated on carbon steel in hydrochloric acid solution. Materials Characterization. 2015;108:29-41.
There are 52 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Sinan Bayram 0000-0002-2156-1566

Mohd Hazwan Hussin 0000-0001-8204-3685

Tuan Sherwyn Hamidon 0000-0003-0154-5427

Mustafa Ozdemir 0000-0001-9448-7582

Publication Date May 7, 2022
Published in Issue Year 2022

Cite

APA Bayram, S., Hussin, M. H., Hamidon, T. S., Ozdemir, M. (2022). Anticorrosive performance of bacterial eumelanin polymer as a novel corrosion inhibitor doped into hybrid sol-gel matrix. Avrupa Bilim Ve Teknoloji Dergisi(35), 9-16. https://doi.org/10.31590/ejosat.1047553