Review
BibTex RIS Cite

Battery Technology from Past to Present

Year 2021, , 947 - 955, 31.12.2021
https://doi.org/10.31590/ejosat.1048673

Abstract

The dependence of human beings on energy for the survival of their lives has created an increasing demand for energy, and as a result, energy has become one of the most researched subjects in the world. Technological systems such as robotics, computers, mobile phones, electric vehicles, space systems, which are the products of developing electronics and nanotechnology; needs a light, easily accessible, cheap, and reliable energy source with high energy potential. In these mobile and portable systems, the continuity of the energy needed and its storability are as important as its environmental friendliness. In the energy storage studies carried out to date, many different methods have been tried in the form of storing thermal energy, electrical energy, mechanical energy, and chemical energy depending on the type of energy to be stored. In this study, battery technology, which is widely used in technological systems and where energy is stored chemically, is discussed. In the study, battery types, working principles, advantages, and disadvantages have been examined comparatively from past to present.

References

  • Aruna, S. T., Savitha, G., Shedthi, J., & William Grips, V. K. (2013). The Corrosion Resistance of Nickel Electrocomposite Coating Containing BaFe12O19 Particles. ISRN Corrosion, 6 pages. doi:http://dx.doi.org/10.1155/2013/192684
  • Azimi, N., Xue, Z., Hu, L., Takoudis, C., Zhang, S., & Zhang, Z. (2015). Additive Effect on the Electrochemical Performance of Lithium–Sulfur Battery. Electrochimica Acta.(154), 205-210. doi:https://doi.org/10.1016/j.electacta.2014.12.041
  • Ba¨uerlein , P., Antonius, C., Löffler, J., & Kümpers, J. (2008). Progress in high-power nickel–metal hydride batteries. Journal of Power Sources, 176, 547–554. doi:http://dx.doi.org/10.1016%2Fj.jpowsour.2007.08.052
  • Bae , H., & Kim, Y. (2021). Technologies of lithium recycling from waste lithium ion batteries: a review. Mater. Adv., 2, 3234-3250. doi:https://doi.org/10.1039/D1MA00216C
  • Bucur, C., Jones, M., Kopylov, M., Spearb, J., & Muldoon, J. (2017). Inorganic–organic layer by layer hybrid membranes for lithium–sulfur batteries. Energy & Environmental Science(10), 905-911. doi:https://doi.org/10.1039/C7EE00398F
  • Bulut , M., & Özcan , E. (2021). A novel approach towards evaluation of joint technology performances of battery energy storage system in a fuzzy environment. Journal of Energy Storage, 36(102361). doi:https://doi.org/10.1016/j.est.2021.102361
  • Cai, K., Song, M., Cairns, E., & Zhang, Y. (2012). Nanostructured Li2S−C Composites as Cathode Material for HighEnergy Lithium/Sulfur Batteries. Chem. Soc.(12), 6474-6479. doi:https://doi.org/10.1021/nl303965a
  • Calborean, A., Murariu, T., & Morari, C. (2021). Optimized lead-acid grid architectures for automotive lead-acid batteries: An electrochemical analysis. Electrochimica Acta, 372(137880). doi:https://doi.org/10.1016/j.electacta.2021.137880
  • Chan, C. K., Peng, H., Liu, G., Mcilwrath, K., Zhang, X. F., Huggins, R. A., & Cui, Y. (2008). High-performance lithium battery anodes using silicon nanowires. nature nanotechnology, 3, 31-35. doi:https://doi.org/10.1038/nnano.2007.411
  • Chen, H., Wang, C., Dong, W., Lu, W., Du, Z., & Chen, L. (2015). Monodispersed Sulfur Nanoparticles for Lithium−Sulfur Batteries with Theoretical Performance. Chem. Soc(15), 798-802. doi:https://doi.org/10.1021/nl504963e
  • Chen, M., Tan, C., Jiang, W., Huang, J., Min, D., Liao , C., . . . Zhu, M. (2021). Influence of over-stoichiometry on hydrogen storage and electrochemical properties of Sm-doped low-Co AB5-type alloys as negative electrode materials in nickel-metal hydride batteries. Journal of Alloys and Compounds, 867(159111). doi:https://doi.org/10.1016/j.jallcom.2021.159111
  • Chen, Z., Shi, N., Ji, Y., Niu, M., & Wang, Y. (2021). Lithium-ion batteries remaining useful life prediction based on BLS- RVM. Energy, 234(121269), 13 pages. doi:https://doi.org/10.1016/j.energy.2021.121269
  • Clean Energy Ministerial, Electric Vehicles İnitiative, İnternational Energy Agency. (2013). Understanding the electric vehicle landscape to 2020. International Energy Agency. Paris: IEA, Global EV Outlook.
  • Cleaver, T., Kovacik, P., Marinescu, M., Zhang, T., & Offer, G. (2018). Commercializing Lithium Sulfur Batteries: Are We Doing the Right Research? Journal of The Electrochemical Society., 1(165), A6029-A6033. doi:http://dx.doi.org/10.1149/2.0071801jes
  • Conder, J., Bouchet, R., Trabesinger, S., Marino, C., Gubler, L., & Villevieille, C. (2017). Direct observation of lithium polysulfides in lithium–sulfur batteries using operando X-ray diffraction. Nature Energy(2), 1-7. doi:http://dx.doi.org/10.1038/nenergy.2017.69
  • Çetin, M. S., Karakaya, B., & Gençoğlu, M. T. (2021). Elektrikli Araçlar İçin Lityum İyon Bataryaların Modellenmesi. Fırat Üniversitesi Müh. Bil. Dergisi, 33(2), 755-763. doi:https://doi.org/10.35234/fumbd.953296
  • Çifçi, D., & Meriç, S. (2021). Pomza-Bazlı Adsorbanların Sentetik Su Numunelerinden Lityum Adsorpsiyonu Verimliliğinin Karşılaştırılması. Fırat Üniversitesi Müh. Bil. Dergisi, 33(1), 185-192. doi:https://doi.org/10.35234/fumbd.773840
  • Dinçer, İ., & Ezan, M. A. (2020). Tüba Enerji Depolama Teknolojileri Raporu. Ankara: Türkiye Bilimler Akademisi Yayınları.
  • Ding , N., Chien , S. W., Andy Hor , T. S., Liu, Z., & Zong, Y. (2014). Key parameters in design of lithium sulfur batteries. Journal of Power Sources(269), 111-116. doi:https://doi.org/10.1016/j.jpowsour.2014.07.008
  • Dong, L., Wang, J., Chen, C., Li, H., Zheng, H., Yan, W., . . . Zhang, J. (2021). Acid-treated multi-walled carbon nanotubes as additives for negative active materials to improve high-rate-partial-state-of-charge cycle-life of lead-acid batteries. Royal Society of Chemistry, 11, 15273-15283. doi:https://doi.org/10.1039/D1RA02208C
  • Evers, S., & Nazar, L. F. (2012). Graphene-enveloped sulfur in a one pot reaction: a cathode with good coulombic efficiency and high practical sulfur content. Chem. Commun(48), 1233-1235. doi:https://doi.org/10.1039/D1RA02208C
  • Gül, E., Kılınç, S., & Gören, A. (2012). Otomati̇k Kontrol Ulusal Toplantısı. TOK-2012. Niğde.
  • Güven, E. C., & Gedik, K. (2019). Ömrünü Tamamlamış Elektrikli Araç Bataryalarının Çevresel Yönetimi. Journal of the Institute of Science and Technology, 9(2), 726-737. doi:https://doi.org/10.21597/jist.446170
  • He, H., Ji, X., & Nazar, L. (2011). High ‘‘C’’ rate Li-S cathodes: sulfur imbibed bimodal porous carbons. Energy Environ. Sci.(4), 2878-2883. doi:https://doi.org/10.1039/C1EE01219C
  • Hofmanna, A., Fronczeka, D., & Besslerc, W. (2014). Mechanistic modeling of polysulfide shuttle and capacity loss in lithium-sulfur batteries. Preprint submitted to Journal of Power Sources, 1-16.
  • Islam, M., Khalekuzzaman, M., Kabir , S., & Rana, M. (2021). A Study on Recycling Used Lead-Acid Batteries (ULABs) in Bangladesh. Researchgate. Proceedings of the WasteSafe 2021 – 7th International Conference on Integrated Solid Waste & Faecal Sludge Management in South-Asian Countries. Khulna, Bangladesh.
  • Ji, X., Lee, K., & Nazar, L. (2009). A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nature Materials(8), 500-506. doi:http://www.nature.com/doifinder/10.1038/nmat2460
  • Jin, J., Wen, Z., Ma, G., Lu, Y., Cui, Y., Wu, M., . . . Wu, X. (2013). Flexible self-supporting graphene–sulfur paper for lithium sulfur batteries. RSC Adv.(3), 2558-2560. doi:https://doi.org/10.1039/C2RA22808D
  • Jung, H. Y., Kim, S. C., Shim, J. Y., Mandal, S., Thangarasu , S., & Thong , T. P. (2021). Positive electrode active material development opportunities through carbon addition in the lead-acid batteries: A recent progress. Journal of Power Sources, 485(229336). doi:https://doi.org/10.1016/j.jpowsour.2020.229336
  • Kotkunde , N., Amrith Ashwin, K. V., Gosavi , A., & Gaur, M. (2021). Lıfe Cycle Assessment Of Nıckel Cadmıum Battery. IOP Conf. Ser.: Mater. Sci. Eng., 11 pages. doi:http://dx.doi.org/10.1088/1757-899X/1123/1/012022
  • Kozak, M., & Kozak, Ş. (2012). Enerji Depolama Yöntemleri. SDU International Technologic Science, 4(2), 17-29.
  • Kul, B. (2020). Geçmişten Günümüze Piller. Takvim-i Vekayi, 8(1), 104-115.
  • Kumar, R., Sahoo, S., Joanni, E., Singh, R. K., Tan, W. K., Kar, K. K., & Matsuda, A. (2019). Recent progress in the synthesis of graphene and derived materials for next generation electrodes of high performance lithium ion batteries. Progress in Energy and Combustion Science, 75(100786), 56 pages. doi:http://dx.doi.org/10.1016/j.pecs.2019.100786
  • Kurzweil, P. (2010). Gaston Planté and his invention of the lead–acid battery—The gen- esis of the first practical rechargeable battery. J. Power Sources, 195(14), 4424–4434. doi:https://doi.org/10.1016/j.jpowsour.2009.12.126
  • Küçükdeveci, N. (2018). Şarj Edilebilir Nikel-Metal Hidrür (Ni-MH) Pillerinde Kullanılan Hidrojen Depolama Alaşımlarındaki SonGelişmeler. BEÜ Fen Bilimleri Dergisi, 454-472.
  • Lach , J., Wróbel , K., Wróbel , J., & Czerwin´ ski , A. (2021). Applications of Carbon in Rechargeable Electrochemical Power Sources: A Review. A Review. Energies, 14(2649), 29 pages.
  • Lin , X., Khosravinia, K., Hu, X., Li , J., & Lu , W. (2021). Lithium Plating Mechanism, Detection, and Mitigation in Lithium-Ion Batteries. Progress in Energy and Combustion Science, 87(100953), 30 pages. doi:https://doi.org/10.1016/j.pecs.2021.100953
  • Liu, Y., & Cui, Y. (2017). Lithium Metal Anodes: A Recipe for Protection. Joule(20), 643-650. doi:https://doi.org/10.1016/j.joule.2017.12.001
  • Lu , X., Luo , F., Tian , Q., Zhang , W., Sui, Z., & Chen , J. (2021). Anatase TiO2 nanowires intertangled with CNT for conductive additive-free lithium-ion battery anodes. Journal of Physics and Chemistry of Solids, 153(110037), 7 pages. doi:https://doi.org/10.1016/j.jpcs.2021.110037
  • Lyu, Y., Wu, X., Wang, K., Feng, Z., Cheng, T., Liu, Y., . . . Guo, B. (2021). An Overview on the Advances of LiCoO2 Cathodes for Lithium-Ion Batteries. Adv. Energy Mater., 11,1-29. doi:https://doi.org/10.1002/aenm.202000982
  • Ma, Z., Huang, X., Jiang, Q., Huo, J., & Wang, S. (2015). Enhanced Cycling Stability of Lithium–Sulfur batteries by Electrostatic-Interaction. Electrochimica Acta(182), 884-890. doi:https://doi.org/10.1016/J.ELECTACTA.2015.10.009
  • Makuza, B., Tian , Q., Guo , X., Chattopadhyay , K., & Yu , D. (2021). Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review. Journal of Power Sources, 491(229622), 21 pages. doi:https://doi.org/10.1016/j.jpowsour.2021.229622
  • Martinez-Bolanos, J. R., Morales Udaeta, M. E., Veiga Gimenes, A. L., & Oliveira da Silva, V. (2020). Economic feasibility of battery energy storage systems for replacing peak power plants for commercial consumers under energy time of use tariffs. Journal of Energy Storage, 29(101373). doi:https://doi.org/10.1016/j.est.2020.101373
  • Moller, K. T., Jensen, T. R., Akiba, E., & Li, H. W. (2017). Hydrogen - A sustainable energy car- rier. J. Prog. Nat. Sci., 27, 34–40. doi:https://doi.org/10.1016/j.pnsc.2016.12.014
  • Muratoğlu, Y., & Alkaya, A. (2016). Elektrikli Araç Teknolojisi Ve Pil Yönetim Sistemi-İnceleme. Vııı. Yenilenebilir Enerji Kaynakları Sempozyumu Bildiriler Kitabı (S. 10-14).
  • Muthu , P., & Sinnaeruvadi , K. (2021). Reversible kinetics and rapid tunnelling characteristics of silicon doped magnesium-titanium nanocomposites prepared by mechanical alloying route for nickel-metal hydride batteries. Materials Chemistry and Physics, 274, 125-129. doi:https://doi.org/10.1016/j.matchemphys.2021.125129
  • Müller, T., & Friedrich, B. (2006). Development of a recycling process for nickel-metal hydride batteries. Journal of Power Sources, 158, 1498–1509. doi:https://doi.org/10.1016/j.jpowsour.2005.10.046
  • Nagao, M., Akitoshi, H., & Tatsumisago, M. (2011). Sulfur–carbon composite electrode for allsolid-state Li/S battery with Li2S–P2S5 solid electrolyte. Electrochimica Acta(56), 6055-6059. doi:http://dx.doi.org/10.1016/j.electacta.2011.04.084
  • Nagata, H., & Chikusa, Y. (2014). Transformation of P2S5 into a Solid Electrolyte with Ionic Conductivity at the Positive Composite Electrode of All-Solid-State Lithium–Sulfur Batteries. . Energy Technol.(2), 753 – 756.
  • Nandiwale, R. (2021). Review of Types of Batteries in Electric Vehicles. International Research Journal of Engineering and Technology (IRJET), 8(1), 79-86.
  • Nazghelichi, T., Torabi, F., & Esfahan, V. (2021). Reducing the charging time of a lead–acid cell in the sense of linear stability analysis. Journal of Energy Storage, 36(102369). doi:https://doi.org/10.1016/J.EST.2021.102369
  • Nitesh , K. A., & Ravichandra . (2021). A Study on Battery Controller Design for the Estimation of State of Charge (SoC) in Battery Management System for Electric Vehicle (EV)/Hybrid EV (HEV). SN Computer Science, 2(197), 1-12. doi:https://doi.org/10.1007/s42979-021-00600-0
  • Odegbemi, F., Idowu, G. A., & Adebayo, A. O. (2001). Nickel recovery from spent nickel-metal hydride batteries using LIX-84I-impregnated activated charcoal. Environmental Nanotechnology, Monitoring & Management, 15(100452). doi:https://doi.org/10.1016/J.ENMM.2021.100452
  • Ouyang, L., Huang, J., Wang, H., Liu, J., & Zhu, M. (2017). Progress of hydrogen storage alloys for Ni-MH rechargeable power batteries in electric vehicles: a review. Mater. Chem. Phys., 200, 164–178. doi:https://doi.org/10.1016/j.matchemphys.2017.07.002
  • Özcan, Ö. F., Karadağ, T., Altuğ, M., & Özgüven, Ö. F. (2021). Elektrikli Araçlarda Kullanılan Pil Kimyasallarının Özellikleri ve Üstün Yönlerinin Kıyaslanması Üzerine Bir Derleme Çalışması. GU J Sci, Part A, 8(2), 276-298.
  • Putois, F. (1995). Market for nickel—cadmium batteries. Journal of Power Sources, 57, 67—70. doi:https://doi.org/10.1016/0378-7753(95)02243-0
  • Roth, H. A., Davis, C. L., & Thomson, R. C. (1997). Modeling solid solution strengthening in nickel alloys. Mater. Transact A., 28, 1329-1335.
  • Saleh, M. M., Bamsaoud, S. F., & Barfed, H. M. (2021). Optimization of nitric acid properties for chemical recycling of cadmium from spent Ni-Cd batteries. J. Phys.: Conf. Ser., 10 pages. doi:https://doi.org/10.1088/1742-6596%2F1900%2F1%2F012018
  • Samanta , A., & Chowdhuri, S. (2021). Active Cell Balancing of Lithium-ion Battery Pack Using Dual DC-DC Converter and AuXiliary Lead-acid Battery. Journal of Energy Storage, 33(102109). doi:https://doi.org/10.1016/j.est.2020.102109
  • Sanguesa, J. A., Torres-Sanz , V., Garrido, P., Martinez , F. J., & Marquez-Barja , J. M. (2021). A Review on Electric Vehicles: Technologies and Challenges. Challenges. Smart Cities, 4, 372–404. doi:https://doi.org/10.3390/smartcities4010022
  • Silvestri, , L., Forcina, A., Arcese, G., & Bella, G. (2020). Recycling technologies of nickelemetal hydride batteries: An LCA based analysis. Journal of Cleaner Production, 273(123083). doi:https://doi.org/10.1016/j.jclepro.2020.123083
  • Stroe, D., Knap, V., Swierczynski, M., & Schaltz, E. (2019). Electrochemical Impedance Spectroscopy-Based Electric Circuit Modeling of Lithium–Sulfur Batteries During a Discharging State. Ieee Transactıons On Industry Applıcatıons(55), 631-637. doi:https://doi.org/10.1109/TIA.2018.2864160
  • Sylwia, W. (2015). Lithium/Sulfur batteries : development and understanding of the working mechanisms. Université Grenoble Alpes.
  • Tanibata, N., Tsukasaki, H., Deguchi, M., Mori, S., Hayashi, A., & Tatsumisago, M. (2017). A novel discharge–charge mechanism of a S–P2S5 composite electrode without electrolytes in all-solid-state Li/S batteries. J. Mater. Chem. A(5), 11224-11228. doi:https://doi.org/10.1039/C7TA01481C
  • Von Handorf, D. E. (2002). The baghdat battery – myth or reality. Platin and Surface Finishing, 89(5), 84-87.
  • Walus, Sylwia. Lithium/Sulfur batteries : development and understanding of the working mechanisms. Université Grenoble Alpes, 2015. English. 2015.
  • Wang, J., Lu, L., Choucair, M., Stride, J., Xu, X., & Liu, H. (2011). Sulfur-graphene composite for rechargeable lithium batteries. Journal of Power Sources(196), 7030-7034. doi:https://doi.org/10.1016/j.jpowsour.2010.09.106
  • Wang, W., Xu, G., Zhang, L., Ma, C., Zhao, Y., Zhang, H., . . . Han, S. (2021). Electrochemical features of Ce2Ni7-type La0.65Nd0.15Mg0.25Ni3.20M0.10 (M = Ni, Mn and Al) hydrogen storage alloys for rechargeable nickel metal hydride batter. Journal of Alloys and Compounds, 861(158469). doi:https://doi.org/10.1016/j.jallcom.2020.158469
  • Winter, M., & Brodd, R. J. (2004). What are batteries, fuel cells, and supercapacitors? Chemical Reviews, 104(10), 4245-4270. doi:https://doi.org/10.1021/cr020730k
  • Witantyo, Merdeka, O. P., Amalia, L., Noerochim, L., Setyawan, H., Shahab, A., & Suwarno, S. (2021). Effects of Graphene Addition on Negative Active Material and Lead Acid Battery performances under Partial State of Charge Condition. Int. J. Electrochem. Sci, 16, 10 Pages. doi:http://dx.doi.org/10.20964/2021.08.27
  • Wu, D., Shi, F., Zhou, G., Zu, C., Liu, C., Liu, K., . . . Cui, Y. (2018). Quantitative investigation of polysulfide adsorption capability of candidate materials for Li-S batteries. Energy Storage Materials(13), 241-246. doi:https://doi.org/10.1016/j.ensm.2018.01.020
  • Xie , J., & Lu, Y. C. (2020). A retrospective on lithium-ion batteries. Nature Communıcatıons, 11(2499), 4 pages. doi:https://doi.org/10.1038/s41467-020-16259-9
  • Xu, B., Qian, D., Wang, Z., & Meng, Y. S. (2012). Recent progress in cathode materials research for advanced lithium ion batteries. Materials Science and Engineering R 73, 51–65. doi:https://doi.org/10.1038/s41467-020-16259-9
  • Xu, J., Dou , S., Liu, H., & Dai , L. (2013). Cathode materials for next generation lithium ion batteries. Nano Energy, 2, 439–442. doi:https://doi.org/10.1016/j.nanoen.2013.05.013
  • Xu, R., Yue, J., Liu, S., Tu, J., Han, F., Liu, P., & Wang, C. (2019). Cathode-Supported All-Solid-State Lithium− Sulfur Batteries with High Cell-Level Energy Density. Energy Lett.(4), 1073-1079. doi:https://doi.org/10.1021/acsenergylett.9b00430
  • Ye, X., Ma, J., Hu, Y., Wei, H., & Ye, F. (2016). MWCNT porous microspheres with an efficient 3D conductive network for high performance lithium– sulfur batteries. Mater. Chem. A.(4), 775–780. doi:https://doi.org/10.1039/C5TA08991C
  • Yılmazoğlu, Z. (2010). Isı Enerjisi Depolama Yöntemleri ve Binalarda Uygulanması. Politeknik Dergisi Journal of Polytechnic, 13(1), 33-42.
  • You, S., Tan, H., Wei, L., Tan, W., & Li , C. C. (2021). Design Strategies of Si/C Composite Anode for Lithium-Ion Batteries. Chem. Eur. J., 27, 12237 – 12256. doi:https://doi.org/10.1002/chem.202100842
  • Yuan, Y., Zheng, G., & Cui, Y. (2013). Nanostructured sulfur cathodes. Chem. Soc.(42), 3018-3032. doi:https://doi.org/10.1039/C2CS35256G
  • Zhang, Q. (2013). The Current Status on the Recycling of Lead-acid Batteries in China. Int. J. Electrochem. Sci., 8, 6457 – 6466.
  • Zhang, S. (2013). New insight into liquid electrolyte of rechargeable lithium/sulfur battery. Electrochimica Acta.(97), 226-230. doi:https://doi.org/10.1016/j.electacta.2013.02.122
  • Zhang, S., & J.A., R. (2012). A new direction for the performance improvement of rechargeable lithium/sulfur batteries. Journal of Power Sources(200), 77-82. doi:https://doi.org/10.1016/j.jpowsour.2011.10.076
  • Zhao, M.-Q., Liu, X.-F., Zhang, Q., Tian, G.-L., Huang, J.-Q., Zhu, W., & Wei, F. (2012). Graphene/Single-Walled Carbon Nanotube Hybrids: One-Step Catalytic Growth and Applications for High-Rate Li–S Batteries. ACS Nano(6), 10759-10769. doi:https://doi.org/10.1021/nn304037d
  • Zheng, L. K., Wu, K. S., Li, Y., Qi, Z. L., Han, D., Zhang, B., . . . Huo, X. (2008). Blood lead and cadmium levels and relevant factors among children from an e-waste recycling town in China. Environ. Res., 108(15-20). doi:https://doi.org/10.1016/j.envres.2008.04.002
  • Zhou, Y. Y., Zhang, Z. Y., Zhang, H. Z., Li, Y., & Weng , Y. (2021). Progress and perspective of vanadium based cathode materials for lithium ion batteries. Tungsten, 3, 279–288. doi:https://doi.org/10.1007/s42864-021-00101-w

Geçmişten Günümüze Batarya Teknolojisi

Year 2021, , 947 - 955, 31.12.2021
https://doi.org/10.31590/ejosat.1048673

Abstract

İnsanoğlunun yaşamını idame edebilmesi için enerjiye olan bağımlılığı, her geçen gün artan enerji talebini oluşturmuş ve bunun sonucu olarak da dünya üzerinde en çok araştırma yapılan konuların başına enerjiyi taşımıştır. Günümüzde gelişen elektronik ve nano teknolojisinin ürünleri olan robotik, bilgisayar, cep telefonu, elektrikli araçlar, uzay sistemleri gibi teknolojik sistemler; yüksek enerji potansiyeline sahip, hafif, kolay ulaşılabilir, ucuz ve güvenilir enerji kaynağına ihtiyaç duymaktadır. Hareketli ve taşınabilir olan bu sistemlerde ihtiyaç duyulan enerjinin sürekliliği ve çevreyle dost olması kadar depolana bilirliği de önemli bir husustur. Günümüze kadar yürütülen enerji depolama çalışmalarında, depolanacak enerjinin çeşidine bağlı olarak; ısıl enerjiyi, elektrik enerjisini, mekanik enerjiyi ve kimyasal enerjiyi depolama şeklinde birçok farklı metot denenmiştir. Bu çalışmada, teknolojik sistemlerde kullanımı yaygın bir şekilde tercih edilen, enerjinin kimyasal olarak depolandığı batarya teknolojisi ele alınmıştır. Çalışmada geçmişten günümüze kadar batarya çeşitleri, çalışma prensipleri, avantajları, dezavantajları karşılaştırmalı olarak incelenmiştir.

References

  • Aruna, S. T., Savitha, G., Shedthi, J., & William Grips, V. K. (2013). The Corrosion Resistance of Nickel Electrocomposite Coating Containing BaFe12O19 Particles. ISRN Corrosion, 6 pages. doi:http://dx.doi.org/10.1155/2013/192684
  • Azimi, N., Xue, Z., Hu, L., Takoudis, C., Zhang, S., & Zhang, Z. (2015). Additive Effect on the Electrochemical Performance of Lithium–Sulfur Battery. Electrochimica Acta.(154), 205-210. doi:https://doi.org/10.1016/j.electacta.2014.12.041
  • Ba¨uerlein , P., Antonius, C., Löffler, J., & Kümpers, J. (2008). Progress in high-power nickel–metal hydride batteries. Journal of Power Sources, 176, 547–554. doi:http://dx.doi.org/10.1016%2Fj.jpowsour.2007.08.052
  • Bae , H., & Kim, Y. (2021). Technologies of lithium recycling from waste lithium ion batteries: a review. Mater. Adv., 2, 3234-3250. doi:https://doi.org/10.1039/D1MA00216C
  • Bucur, C., Jones, M., Kopylov, M., Spearb, J., & Muldoon, J. (2017). Inorganic–organic layer by layer hybrid membranes for lithium–sulfur batteries. Energy & Environmental Science(10), 905-911. doi:https://doi.org/10.1039/C7EE00398F
  • Bulut , M., & Özcan , E. (2021). A novel approach towards evaluation of joint technology performances of battery energy storage system in a fuzzy environment. Journal of Energy Storage, 36(102361). doi:https://doi.org/10.1016/j.est.2021.102361
  • Cai, K., Song, M., Cairns, E., & Zhang, Y. (2012). Nanostructured Li2S−C Composites as Cathode Material for HighEnergy Lithium/Sulfur Batteries. Chem. Soc.(12), 6474-6479. doi:https://doi.org/10.1021/nl303965a
  • Calborean, A., Murariu, T., & Morari, C. (2021). Optimized lead-acid grid architectures for automotive lead-acid batteries: An electrochemical analysis. Electrochimica Acta, 372(137880). doi:https://doi.org/10.1016/j.electacta.2021.137880
  • Chan, C. K., Peng, H., Liu, G., Mcilwrath, K., Zhang, X. F., Huggins, R. A., & Cui, Y. (2008). High-performance lithium battery anodes using silicon nanowires. nature nanotechnology, 3, 31-35. doi:https://doi.org/10.1038/nnano.2007.411
  • Chen, H., Wang, C., Dong, W., Lu, W., Du, Z., & Chen, L. (2015). Monodispersed Sulfur Nanoparticles for Lithium−Sulfur Batteries with Theoretical Performance. Chem. Soc(15), 798-802. doi:https://doi.org/10.1021/nl504963e
  • Chen, M., Tan, C., Jiang, W., Huang, J., Min, D., Liao , C., . . . Zhu, M. (2021). Influence of over-stoichiometry on hydrogen storage and electrochemical properties of Sm-doped low-Co AB5-type alloys as negative electrode materials in nickel-metal hydride batteries. Journal of Alloys and Compounds, 867(159111). doi:https://doi.org/10.1016/j.jallcom.2021.159111
  • Chen, Z., Shi, N., Ji, Y., Niu, M., & Wang, Y. (2021). Lithium-ion batteries remaining useful life prediction based on BLS- RVM. Energy, 234(121269), 13 pages. doi:https://doi.org/10.1016/j.energy.2021.121269
  • Clean Energy Ministerial, Electric Vehicles İnitiative, İnternational Energy Agency. (2013). Understanding the electric vehicle landscape to 2020. International Energy Agency. Paris: IEA, Global EV Outlook.
  • Cleaver, T., Kovacik, P., Marinescu, M., Zhang, T., & Offer, G. (2018). Commercializing Lithium Sulfur Batteries: Are We Doing the Right Research? Journal of The Electrochemical Society., 1(165), A6029-A6033. doi:http://dx.doi.org/10.1149/2.0071801jes
  • Conder, J., Bouchet, R., Trabesinger, S., Marino, C., Gubler, L., & Villevieille, C. (2017). Direct observation of lithium polysulfides in lithium–sulfur batteries using operando X-ray diffraction. Nature Energy(2), 1-7. doi:http://dx.doi.org/10.1038/nenergy.2017.69
  • Çetin, M. S., Karakaya, B., & Gençoğlu, M. T. (2021). Elektrikli Araçlar İçin Lityum İyon Bataryaların Modellenmesi. Fırat Üniversitesi Müh. Bil. Dergisi, 33(2), 755-763. doi:https://doi.org/10.35234/fumbd.953296
  • Çifçi, D., & Meriç, S. (2021). Pomza-Bazlı Adsorbanların Sentetik Su Numunelerinden Lityum Adsorpsiyonu Verimliliğinin Karşılaştırılması. Fırat Üniversitesi Müh. Bil. Dergisi, 33(1), 185-192. doi:https://doi.org/10.35234/fumbd.773840
  • Dinçer, İ., & Ezan, M. A. (2020). Tüba Enerji Depolama Teknolojileri Raporu. Ankara: Türkiye Bilimler Akademisi Yayınları.
  • Ding , N., Chien , S. W., Andy Hor , T. S., Liu, Z., & Zong, Y. (2014). Key parameters in design of lithium sulfur batteries. Journal of Power Sources(269), 111-116. doi:https://doi.org/10.1016/j.jpowsour.2014.07.008
  • Dong, L., Wang, J., Chen, C., Li, H., Zheng, H., Yan, W., . . . Zhang, J. (2021). Acid-treated multi-walled carbon nanotubes as additives for negative active materials to improve high-rate-partial-state-of-charge cycle-life of lead-acid batteries. Royal Society of Chemistry, 11, 15273-15283. doi:https://doi.org/10.1039/D1RA02208C
  • Evers, S., & Nazar, L. F. (2012). Graphene-enveloped sulfur in a one pot reaction: a cathode with good coulombic efficiency and high practical sulfur content. Chem. Commun(48), 1233-1235. doi:https://doi.org/10.1039/D1RA02208C
  • Gül, E., Kılınç, S., & Gören, A. (2012). Otomati̇k Kontrol Ulusal Toplantısı. TOK-2012. Niğde.
  • Güven, E. C., & Gedik, K. (2019). Ömrünü Tamamlamış Elektrikli Araç Bataryalarının Çevresel Yönetimi. Journal of the Institute of Science and Technology, 9(2), 726-737. doi:https://doi.org/10.21597/jist.446170
  • He, H., Ji, X., & Nazar, L. (2011). High ‘‘C’’ rate Li-S cathodes: sulfur imbibed bimodal porous carbons. Energy Environ. Sci.(4), 2878-2883. doi:https://doi.org/10.1039/C1EE01219C
  • Hofmanna, A., Fronczeka, D., & Besslerc, W. (2014). Mechanistic modeling of polysulfide shuttle and capacity loss in lithium-sulfur batteries. Preprint submitted to Journal of Power Sources, 1-16.
  • Islam, M., Khalekuzzaman, M., Kabir , S., & Rana, M. (2021). A Study on Recycling Used Lead-Acid Batteries (ULABs) in Bangladesh. Researchgate. Proceedings of the WasteSafe 2021 – 7th International Conference on Integrated Solid Waste & Faecal Sludge Management in South-Asian Countries. Khulna, Bangladesh.
  • Ji, X., Lee, K., & Nazar, L. (2009). A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nature Materials(8), 500-506. doi:http://www.nature.com/doifinder/10.1038/nmat2460
  • Jin, J., Wen, Z., Ma, G., Lu, Y., Cui, Y., Wu, M., . . . Wu, X. (2013). Flexible self-supporting graphene–sulfur paper for lithium sulfur batteries. RSC Adv.(3), 2558-2560. doi:https://doi.org/10.1039/C2RA22808D
  • Jung, H. Y., Kim, S. C., Shim, J. Y., Mandal, S., Thangarasu , S., & Thong , T. P. (2021). Positive electrode active material development opportunities through carbon addition in the lead-acid batteries: A recent progress. Journal of Power Sources, 485(229336). doi:https://doi.org/10.1016/j.jpowsour.2020.229336
  • Kotkunde , N., Amrith Ashwin, K. V., Gosavi , A., & Gaur, M. (2021). Lıfe Cycle Assessment Of Nıckel Cadmıum Battery. IOP Conf. Ser.: Mater. Sci. Eng., 11 pages. doi:http://dx.doi.org/10.1088/1757-899X/1123/1/012022
  • Kozak, M., & Kozak, Ş. (2012). Enerji Depolama Yöntemleri. SDU International Technologic Science, 4(2), 17-29.
  • Kul, B. (2020). Geçmişten Günümüze Piller. Takvim-i Vekayi, 8(1), 104-115.
  • Kumar, R., Sahoo, S., Joanni, E., Singh, R. K., Tan, W. K., Kar, K. K., & Matsuda, A. (2019). Recent progress in the synthesis of graphene and derived materials for next generation electrodes of high performance lithium ion batteries. Progress in Energy and Combustion Science, 75(100786), 56 pages. doi:http://dx.doi.org/10.1016/j.pecs.2019.100786
  • Kurzweil, P. (2010). Gaston Planté and his invention of the lead–acid battery—The gen- esis of the first practical rechargeable battery. J. Power Sources, 195(14), 4424–4434. doi:https://doi.org/10.1016/j.jpowsour.2009.12.126
  • Küçükdeveci, N. (2018). Şarj Edilebilir Nikel-Metal Hidrür (Ni-MH) Pillerinde Kullanılan Hidrojen Depolama Alaşımlarındaki SonGelişmeler. BEÜ Fen Bilimleri Dergisi, 454-472.
  • Lach , J., Wróbel , K., Wróbel , J., & Czerwin´ ski , A. (2021). Applications of Carbon in Rechargeable Electrochemical Power Sources: A Review. A Review. Energies, 14(2649), 29 pages.
  • Lin , X., Khosravinia, K., Hu, X., Li , J., & Lu , W. (2021). Lithium Plating Mechanism, Detection, and Mitigation in Lithium-Ion Batteries. Progress in Energy and Combustion Science, 87(100953), 30 pages. doi:https://doi.org/10.1016/j.pecs.2021.100953
  • Liu, Y., & Cui, Y. (2017). Lithium Metal Anodes: A Recipe for Protection. Joule(20), 643-650. doi:https://doi.org/10.1016/j.joule.2017.12.001
  • Lu , X., Luo , F., Tian , Q., Zhang , W., Sui, Z., & Chen , J. (2021). Anatase TiO2 nanowires intertangled with CNT for conductive additive-free lithium-ion battery anodes. Journal of Physics and Chemistry of Solids, 153(110037), 7 pages. doi:https://doi.org/10.1016/j.jpcs.2021.110037
  • Lyu, Y., Wu, X., Wang, K., Feng, Z., Cheng, T., Liu, Y., . . . Guo, B. (2021). An Overview on the Advances of LiCoO2 Cathodes for Lithium-Ion Batteries. Adv. Energy Mater., 11,1-29. doi:https://doi.org/10.1002/aenm.202000982
  • Ma, Z., Huang, X., Jiang, Q., Huo, J., & Wang, S. (2015). Enhanced Cycling Stability of Lithium–Sulfur batteries by Electrostatic-Interaction. Electrochimica Acta(182), 884-890. doi:https://doi.org/10.1016/J.ELECTACTA.2015.10.009
  • Makuza, B., Tian , Q., Guo , X., Chattopadhyay , K., & Yu , D. (2021). Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review. Journal of Power Sources, 491(229622), 21 pages. doi:https://doi.org/10.1016/j.jpowsour.2021.229622
  • Martinez-Bolanos, J. R., Morales Udaeta, M. E., Veiga Gimenes, A. L., & Oliveira da Silva, V. (2020). Economic feasibility of battery energy storage systems for replacing peak power plants for commercial consumers under energy time of use tariffs. Journal of Energy Storage, 29(101373). doi:https://doi.org/10.1016/j.est.2020.101373
  • Moller, K. T., Jensen, T. R., Akiba, E., & Li, H. W. (2017). Hydrogen - A sustainable energy car- rier. J. Prog. Nat. Sci., 27, 34–40. doi:https://doi.org/10.1016/j.pnsc.2016.12.014
  • Muratoğlu, Y., & Alkaya, A. (2016). Elektrikli Araç Teknolojisi Ve Pil Yönetim Sistemi-İnceleme. Vııı. Yenilenebilir Enerji Kaynakları Sempozyumu Bildiriler Kitabı (S. 10-14).
  • Muthu , P., & Sinnaeruvadi , K. (2021). Reversible kinetics and rapid tunnelling characteristics of silicon doped magnesium-titanium nanocomposites prepared by mechanical alloying route for nickel-metal hydride batteries. Materials Chemistry and Physics, 274, 125-129. doi:https://doi.org/10.1016/j.matchemphys.2021.125129
  • Müller, T., & Friedrich, B. (2006). Development of a recycling process for nickel-metal hydride batteries. Journal of Power Sources, 158, 1498–1509. doi:https://doi.org/10.1016/j.jpowsour.2005.10.046
  • Nagao, M., Akitoshi, H., & Tatsumisago, M. (2011). Sulfur–carbon composite electrode for allsolid-state Li/S battery with Li2S–P2S5 solid electrolyte. Electrochimica Acta(56), 6055-6059. doi:http://dx.doi.org/10.1016/j.electacta.2011.04.084
  • Nagata, H., & Chikusa, Y. (2014). Transformation of P2S5 into a Solid Electrolyte with Ionic Conductivity at the Positive Composite Electrode of All-Solid-State Lithium–Sulfur Batteries. . Energy Technol.(2), 753 – 756.
  • Nandiwale, R. (2021). Review of Types of Batteries in Electric Vehicles. International Research Journal of Engineering and Technology (IRJET), 8(1), 79-86.
  • Nazghelichi, T., Torabi, F., & Esfahan, V. (2021). Reducing the charging time of a lead–acid cell in the sense of linear stability analysis. Journal of Energy Storage, 36(102369). doi:https://doi.org/10.1016/J.EST.2021.102369
  • Nitesh , K. A., & Ravichandra . (2021). A Study on Battery Controller Design for the Estimation of State of Charge (SoC) in Battery Management System for Electric Vehicle (EV)/Hybrid EV (HEV). SN Computer Science, 2(197), 1-12. doi:https://doi.org/10.1007/s42979-021-00600-0
  • Odegbemi, F., Idowu, G. A., & Adebayo, A. O. (2001). Nickel recovery from spent nickel-metal hydride batteries using LIX-84I-impregnated activated charcoal. Environmental Nanotechnology, Monitoring & Management, 15(100452). doi:https://doi.org/10.1016/J.ENMM.2021.100452
  • Ouyang, L., Huang, J., Wang, H., Liu, J., & Zhu, M. (2017). Progress of hydrogen storage alloys for Ni-MH rechargeable power batteries in electric vehicles: a review. Mater. Chem. Phys., 200, 164–178. doi:https://doi.org/10.1016/j.matchemphys.2017.07.002
  • Özcan, Ö. F., Karadağ, T., Altuğ, M., & Özgüven, Ö. F. (2021). Elektrikli Araçlarda Kullanılan Pil Kimyasallarının Özellikleri ve Üstün Yönlerinin Kıyaslanması Üzerine Bir Derleme Çalışması. GU J Sci, Part A, 8(2), 276-298.
  • Putois, F. (1995). Market for nickel—cadmium batteries. Journal of Power Sources, 57, 67—70. doi:https://doi.org/10.1016/0378-7753(95)02243-0
  • Roth, H. A., Davis, C. L., & Thomson, R. C. (1997). Modeling solid solution strengthening in nickel alloys. Mater. Transact A., 28, 1329-1335.
  • Saleh, M. M., Bamsaoud, S. F., & Barfed, H. M. (2021). Optimization of nitric acid properties for chemical recycling of cadmium from spent Ni-Cd batteries. J. Phys.: Conf. Ser., 10 pages. doi:https://doi.org/10.1088/1742-6596%2F1900%2F1%2F012018
  • Samanta , A., & Chowdhuri, S. (2021). Active Cell Balancing of Lithium-ion Battery Pack Using Dual DC-DC Converter and AuXiliary Lead-acid Battery. Journal of Energy Storage, 33(102109). doi:https://doi.org/10.1016/j.est.2020.102109
  • Sanguesa, J. A., Torres-Sanz , V., Garrido, P., Martinez , F. J., & Marquez-Barja , J. M. (2021). A Review on Electric Vehicles: Technologies and Challenges. Challenges. Smart Cities, 4, 372–404. doi:https://doi.org/10.3390/smartcities4010022
  • Silvestri, , L., Forcina, A., Arcese, G., & Bella, G. (2020). Recycling technologies of nickelemetal hydride batteries: An LCA based analysis. Journal of Cleaner Production, 273(123083). doi:https://doi.org/10.1016/j.jclepro.2020.123083
  • Stroe, D., Knap, V., Swierczynski, M., & Schaltz, E. (2019). Electrochemical Impedance Spectroscopy-Based Electric Circuit Modeling of Lithium–Sulfur Batteries During a Discharging State. Ieee Transactıons On Industry Applıcatıons(55), 631-637. doi:https://doi.org/10.1109/TIA.2018.2864160
  • Sylwia, W. (2015). Lithium/Sulfur batteries : development and understanding of the working mechanisms. Université Grenoble Alpes.
  • Tanibata, N., Tsukasaki, H., Deguchi, M., Mori, S., Hayashi, A., & Tatsumisago, M. (2017). A novel discharge–charge mechanism of a S–P2S5 composite electrode without electrolytes in all-solid-state Li/S batteries. J. Mater. Chem. A(5), 11224-11228. doi:https://doi.org/10.1039/C7TA01481C
  • Von Handorf, D. E. (2002). The baghdat battery – myth or reality. Platin and Surface Finishing, 89(5), 84-87.
  • Walus, Sylwia. Lithium/Sulfur batteries : development and understanding of the working mechanisms. Université Grenoble Alpes, 2015. English. 2015.
  • Wang, J., Lu, L., Choucair, M., Stride, J., Xu, X., & Liu, H. (2011). Sulfur-graphene composite for rechargeable lithium batteries. Journal of Power Sources(196), 7030-7034. doi:https://doi.org/10.1016/j.jpowsour.2010.09.106
  • Wang, W., Xu, G., Zhang, L., Ma, C., Zhao, Y., Zhang, H., . . . Han, S. (2021). Electrochemical features of Ce2Ni7-type La0.65Nd0.15Mg0.25Ni3.20M0.10 (M = Ni, Mn and Al) hydrogen storage alloys for rechargeable nickel metal hydride batter. Journal of Alloys and Compounds, 861(158469). doi:https://doi.org/10.1016/j.jallcom.2020.158469
  • Winter, M., & Brodd, R. J. (2004). What are batteries, fuel cells, and supercapacitors? Chemical Reviews, 104(10), 4245-4270. doi:https://doi.org/10.1021/cr020730k
  • Witantyo, Merdeka, O. P., Amalia, L., Noerochim, L., Setyawan, H., Shahab, A., & Suwarno, S. (2021). Effects of Graphene Addition on Negative Active Material and Lead Acid Battery performances under Partial State of Charge Condition. Int. J. Electrochem. Sci, 16, 10 Pages. doi:http://dx.doi.org/10.20964/2021.08.27
  • Wu, D., Shi, F., Zhou, G., Zu, C., Liu, C., Liu, K., . . . Cui, Y. (2018). Quantitative investigation of polysulfide adsorption capability of candidate materials for Li-S batteries. Energy Storage Materials(13), 241-246. doi:https://doi.org/10.1016/j.ensm.2018.01.020
  • Xie , J., & Lu, Y. C. (2020). A retrospective on lithium-ion batteries. Nature Communıcatıons, 11(2499), 4 pages. doi:https://doi.org/10.1038/s41467-020-16259-9
  • Xu, B., Qian, D., Wang, Z., & Meng, Y. S. (2012). Recent progress in cathode materials research for advanced lithium ion batteries. Materials Science and Engineering R 73, 51–65. doi:https://doi.org/10.1038/s41467-020-16259-9
  • Xu, J., Dou , S., Liu, H., & Dai , L. (2013). Cathode materials for next generation lithium ion batteries. Nano Energy, 2, 439–442. doi:https://doi.org/10.1016/j.nanoen.2013.05.013
  • Xu, R., Yue, J., Liu, S., Tu, J., Han, F., Liu, P., & Wang, C. (2019). Cathode-Supported All-Solid-State Lithium− Sulfur Batteries with High Cell-Level Energy Density. Energy Lett.(4), 1073-1079. doi:https://doi.org/10.1021/acsenergylett.9b00430
  • Ye, X., Ma, J., Hu, Y., Wei, H., & Ye, F. (2016). MWCNT porous microspheres with an efficient 3D conductive network for high performance lithium– sulfur batteries. Mater. Chem. A.(4), 775–780. doi:https://doi.org/10.1039/C5TA08991C
  • Yılmazoğlu, Z. (2010). Isı Enerjisi Depolama Yöntemleri ve Binalarda Uygulanması. Politeknik Dergisi Journal of Polytechnic, 13(1), 33-42.
  • You, S., Tan, H., Wei, L., Tan, W., & Li , C. C. (2021). Design Strategies of Si/C Composite Anode for Lithium-Ion Batteries. Chem. Eur. J., 27, 12237 – 12256. doi:https://doi.org/10.1002/chem.202100842
  • Yuan, Y., Zheng, G., & Cui, Y. (2013). Nanostructured sulfur cathodes. Chem. Soc.(42), 3018-3032. doi:https://doi.org/10.1039/C2CS35256G
  • Zhang, Q. (2013). The Current Status on the Recycling of Lead-acid Batteries in China. Int. J. Electrochem. Sci., 8, 6457 – 6466.
  • Zhang, S. (2013). New insight into liquid electrolyte of rechargeable lithium/sulfur battery. Electrochimica Acta.(97), 226-230. doi:https://doi.org/10.1016/j.electacta.2013.02.122
  • Zhang, S., & J.A., R. (2012). A new direction for the performance improvement of rechargeable lithium/sulfur batteries. Journal of Power Sources(200), 77-82. doi:https://doi.org/10.1016/j.jpowsour.2011.10.076
  • Zhao, M.-Q., Liu, X.-F., Zhang, Q., Tian, G.-L., Huang, J.-Q., Zhu, W., & Wei, F. (2012). Graphene/Single-Walled Carbon Nanotube Hybrids: One-Step Catalytic Growth and Applications for High-Rate Li–S Batteries. ACS Nano(6), 10759-10769. doi:https://doi.org/10.1021/nn304037d
  • Zheng, L. K., Wu, K. S., Li, Y., Qi, Z. L., Han, D., Zhang, B., . . . Huo, X. (2008). Blood lead and cadmium levels and relevant factors among children from an e-waste recycling town in China. Environ. Res., 108(15-20). doi:https://doi.org/10.1016/j.envres.2008.04.002
  • Zhou, Y. Y., Zhang, Z. Y., Zhang, H. Z., Li, Y., & Weng , Y. (2021). Progress and perspective of vanadium based cathode materials for lithium ion batteries. Tungsten, 3, 279–288. doi:https://doi.org/10.1007/s42864-021-00101-w
There are 85 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Şükran Efe 0000-0002-4033-6786

Zeynep Azra Güngör 0000-0001-6414-8395

Publication Date December 31, 2021
Published in Issue Year 2021

Cite

APA Efe, Ş., & Güngör, Z. A. (2021). Geçmişten Günümüze Batarya Teknolojisi. Avrupa Bilim Ve Teknoloji Dergisi(32), 947-955. https://doi.org/10.31590/ejosat.1048673