Research Article
BibTex RIS Cite

3D Yazıcıların Termal Verimliliğini Artırmak için Yeni Ekstrüder Isı Bloğu Tasarımları

Year 2022, , 491 - 500, 31.08.2022
https://doi.org/10.31590/ejosat.1050661

Abstract

3 boyutlu yazıcılar eklemeli imalat teknolojisinin en yaygın ve popular methodudur ve termal etkileri kullanarak malzemelerin füzyonunu sağlarlar. Bu fenomen sıcaklığı baskı kalitesini etkileyen en önemli faktör haline getirir. Sıcaklık ektrüderdeki alüminyum ekstrüder ısı bloğu tarafından sağlanır ve sıcaklık rejimi baskı malzemesinin tipine göre sabit olmalıdır. Bu çalışmanın amacı, sıcaklık rejimini sabit tutmak için ısıl verimi yüksek alüminyum ekstrüder ısı bloğu tasarımları yapmak ve yeni tasarımların ısıl davranışını ANSYS simülasyonu kullanarak ticari bir ürün bloğu tasarımı ile analiz etmektir. Blokların malzemeleri aynı seçilmiş ve sınır koşulları belirlenerek blokların sıcaklık dağılımı ve ortalama ısı akısı hesaplanmıştır. Simülasyondan elde edilen sonuçlar, ticari bir ürün bloğunun termal davranışı ile karşılaştırıldığında tatmin edicidir.

Supporting Institution

yok

References

  • Abbott, A. C., Tandon, G. P., Bradford, R. L., Koerner, H., & Baur, J. W. (2018). Process-structure-property effects on ABS bond strength in fused filament fabrication. Additive Manufacturing, 19, 29–38. https://doi.org/10.1016/j.addma.2017.11.002
  • Belhocine, A., & Bouchetara, M. (2012). Thermal analysis of a solid brake disc. Applied Thermal Engineering, 32, 59–67. https://doi.org/10.1016/j.applthermaleng.2011.08.029
  • Bellehumeur, C., Li, L., Sun, Q., & Gu, P. (2004). Modeling of bond formation between polymer filaments in the fused deposition modeling process. Journal of Manufacturing Processes, 6(2), 170–178. https://doi.org/10.1016/S1526-6125(04)70071-7
  • Çayıroğlu, İ., Yıldırım, F., & Şahin, S. (2017). İnce Cidarlı Basınçlı Kapların Dış Yükler Altında Mekanik Davranışlarının Deneysel ve Sayısal Olarak İncelenmesi. Çukurova University Journal of the Faculty of Engineering and Architecture, 32(December), 99–106.
  • Çengel, Y., & Ghajar, A. J. (2015). Heat and Mass Transfer: Fundamentals and Applications.
  • Chacón, J. M., Caminero, M. A., García-Plaza, E., & Núñez, P. J. (2017). Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection. Materials and Design, 124, 143–157. https://doi.org/10.1016/j.matdes.2017.03.065
  • Cojuhari, I., Fiodorov, I., Izvoreanu, B., Moraru, D., & Botnaru, S. (2017). Automatic temperature control in 3D printing of the polymer details. 2017 11th International Conference on Electromechanical and Power Systems, SIELMEN 2017 - Proceedings, 2017-Janua, 1–5. https://doi.org/10.1109/SIELMEN.2017.8123287
  • Comminal, R., Serdeczny, M. P., Pedersen, D. B., & Spangenberg, J. (2018). Numerical modeling of the strand deposition flow in extrusion-based additive manufacturing. Additive Manufacturing, 20, 68–76. https://doi.org/10.1016/j.addma.2017.12.013
  • Coppola, B., Cappetti, N., Maio, L. Di, Scarfato, P., & Incarnato, L. (2018). 3D printing of PLA/clay nanocomposites: Influence of printing temperature on printed samples properties. Materials, 11(10), 1–17. https://doi.org/10.3390/ma11101947
  • Demir, H., & Coşgun, A. E. (2019). Comparison of PLA and ABS on Robot Arm Model and 3D Technology. European Journal of Advances in Engineering and Technology, 6(8), 38–44. http://www.ejaet.com/PDF/6-8/EJAET-6-8-38-44
  • Dizon, J. R. C., Espera, A. H., Chen, Q., & Advincula, R. C. (2018). Mechanical characterization of 3D-printed polymers. Additive Manufacturing, 20, 44–67. https://doi.org/10.1016/j.addma.2017.12.002
  • Enrique, L., & Vega-rios, A. (2019). Filament Extrusion and Its 3D Printing of Poly ( Lactic Acid ) / Poly ( Styrene- co -Methyl Methacrylate ) Blends. Applied Sciences. https://doi.org/10.3390/app9235153
  • Gök, K., & Gök, A. (2020). Numeric Simulation of Effect on The CBN Cutting Tool Stresses of Austempering Process. Journal of Polytechnic, 23(1), 37–44. https://doi.org/10.2339/politeknik.452739
  • Gregor-Svetec, D., Leskovšek, M., Vrabič Brodnjak, U., Stankovič Elesini, U., Muck, D., & Urbas, R. (2020). Characteristics of HDPE/cardboard dust 3D printable composite filaments. Journal of Materials Processing Technology, 276(March 2019), 116379. https://doi.org/10.1016/j.jmatprotec.2019.116379
  • Kariz, M., Sernek, M., Obućina, M., & Kuzman, M. K. (2018). Effect of wood content in FDM filament on properties of 3D printed parts. Materials Today Communications, 14(December 2017), 135–140. https://doi.org/10.1016/j.mtcomm.2017.12.016
  • McIlroy, C., & Olmsted, P. D. (2017). Disentanglement effects on welding behaviour of polymer melts during the fused-filament-fabrication method for additive manufacturing. Polymer, 123, 376–391. https://doi.org/10.1016/j.polymer.2017.06.051
  • Osswald, T. A., Puentes, J., & Kattinger, J. (2018). Fused filament fabrication melting model. Additive Manufacturing, 22(April), 51–59. https://doi.org/10.1016/j.addma.2018.04.030
  • Peng, F., Vogt, B. D., & Cakmak, M. (2018). Complex flow and temperature history during melt extrusion in material extrusion additive manufacturing. Additive Manufacturing, 22(May), 197–206. https://doi.org/10.1016/j.addma.2018.05.015
  • Print Quality Guide. (2020). https://www.simplify3d.com/support/print-quality-troubleshooting/curling-or-rough-corners/
  • Recebli, Z., Gedik, E., & Selimli, S. (2016). Electrical field effect on three-dimensional magnetohydrodynamic pipe flow: A CFD study. Progress in Computational Fluid Dynamics, 16(4), 261–270. https://doi.org/10.1504/PCFD.2016.077293
  • Selimli, S., & Recebli, Z. (2018). Impact of electrical and magnetic field on cooling process of liquid metal duct magnetohydrodynamic flow. Thermal Science, 22(1), 263–271. https://doi.org/10.2298/TSCI151110147S
  • Selimli, S., Recebli, Z., & Arcaklioglu, E. (2015). MHD numerical analyses of hydrodynamically developing laminar liquid lithium duct flow. International Journal of Hydrogen Energy, 40(44), 15358–15364. https://doi.org/10.1016/j.ijhydene.2015.02.020
  • Shah, J., Snider, B., Clarke, T., Kozutsky, S., Lacki, M., & Hosseini, A. (2019). Large-scale 3D printers for additive manufacturing: design considerations and challenges. The International Journal of Advanced Manufacturing Technology, 104(2), 1–15. https://doi.org/10.1007/s00170-019-04074-6
  • Singh, R., Singh, G., Singh, J., & Kumar, R. (2019). Investigations for tensile, compressive and morphological properties of 3D printed functional prototypes of PLA-PEKK-HAp-CS. Journal of Thermoplastic Composite Materials. https://doi.org/10.1177/0892705719870595
  • Song, Y., Li, Y., Song, W., Yee, K., Lee, K. Y., & Tagarielli, V. L. (2017). Measurements of the mechanical response of unidirectional 3D-printed PLA. Materials and Design, 123, 154–164. https://doi.org/10.1016/j.matdes.2017.03.051
  • Turner, B. N., & Gold, S. A. (2015). A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness. Rapid Prototyping Journal, 21(3), 250–261. https://doi.org/10.1108/RPJ-02-2013-0017
  • Turner, B. N., Strong, R., & Gold, S. A. (2014). A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyping Journal, 20(3), 192–204. https://doi.org/10.1108/RPJ-01-2013-0012
  • Vukicevic, M., Mosadegh, B., Min, J. K., & Little, S. H. (2017). Cardiac 3D Printing and its Future Directions. JACC: Cardiovascular Imaging, 10(2), 171–184. https://doi.org/10.1016/j.jcmg.2016.12.001
  • Wong, K. V., & Hernandez, A. (2012). A Review of Additive Manufacturing. ISRN Mechanical Engineering, 2012, 1–10. https://doi.org/10.5402/2012/208760
  • Yang, C., Tian, X., Li, D., Cao, Y., Zhao, F., & Shi, C. (2017). Influence of thermal processing conditions in 3D printing on the crystallinity and mechanical properties of PEEK material. Journal of Materials Processing Technology, 248(May), 1–7. https://doi.org/10.1016/j.jmatprotec.2017.04.027

Novel Extruder Heat Block Designs to Improve the Thermal Efficiency of 3D Printers

Year 2022, , 491 - 500, 31.08.2022
https://doi.org/10.31590/ejosat.1050661

Abstract

3D printers are the most common and popular method of additive manufacturing technology and provide fusion of materials using thermal effects. This phenomenon makes that temperature the most important factor affecting printing quality. The temperature is provided by the Aluminium Extruder Heat Block in the extruder and the temperature regime must be constant according to the type of printing material. The objective of this study is to make aluminium Extruder Heat Block designs with high thermal efficiency to keep the temperature regime constant and to analyse the thermal behaviour of new designs with a commercial product block design using ANSYS simulation. The materials of the blocks were chosen the same and the temperature distribution of the blocks and the average heat flux were calculated by determining the boundary conditions. The results obtained from the simulation are satisfactory when compared with the thermal behaviour of a commercial product block.

References

  • Abbott, A. C., Tandon, G. P., Bradford, R. L., Koerner, H., & Baur, J. W. (2018). Process-structure-property effects on ABS bond strength in fused filament fabrication. Additive Manufacturing, 19, 29–38. https://doi.org/10.1016/j.addma.2017.11.002
  • Belhocine, A., & Bouchetara, M. (2012). Thermal analysis of a solid brake disc. Applied Thermal Engineering, 32, 59–67. https://doi.org/10.1016/j.applthermaleng.2011.08.029
  • Bellehumeur, C., Li, L., Sun, Q., & Gu, P. (2004). Modeling of bond formation between polymer filaments in the fused deposition modeling process. Journal of Manufacturing Processes, 6(2), 170–178. https://doi.org/10.1016/S1526-6125(04)70071-7
  • Çayıroğlu, İ., Yıldırım, F., & Şahin, S. (2017). İnce Cidarlı Basınçlı Kapların Dış Yükler Altında Mekanik Davranışlarının Deneysel ve Sayısal Olarak İncelenmesi. Çukurova University Journal of the Faculty of Engineering and Architecture, 32(December), 99–106.
  • Çengel, Y., & Ghajar, A. J. (2015). Heat and Mass Transfer: Fundamentals and Applications.
  • Chacón, J. M., Caminero, M. A., García-Plaza, E., & Núñez, P. J. (2017). Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection. Materials and Design, 124, 143–157. https://doi.org/10.1016/j.matdes.2017.03.065
  • Cojuhari, I., Fiodorov, I., Izvoreanu, B., Moraru, D., & Botnaru, S. (2017). Automatic temperature control in 3D printing of the polymer details. 2017 11th International Conference on Electromechanical and Power Systems, SIELMEN 2017 - Proceedings, 2017-Janua, 1–5. https://doi.org/10.1109/SIELMEN.2017.8123287
  • Comminal, R., Serdeczny, M. P., Pedersen, D. B., & Spangenberg, J. (2018). Numerical modeling of the strand deposition flow in extrusion-based additive manufacturing. Additive Manufacturing, 20, 68–76. https://doi.org/10.1016/j.addma.2017.12.013
  • Coppola, B., Cappetti, N., Maio, L. Di, Scarfato, P., & Incarnato, L. (2018). 3D printing of PLA/clay nanocomposites: Influence of printing temperature on printed samples properties. Materials, 11(10), 1–17. https://doi.org/10.3390/ma11101947
  • Demir, H., & Coşgun, A. E. (2019). Comparison of PLA and ABS on Robot Arm Model and 3D Technology. European Journal of Advances in Engineering and Technology, 6(8), 38–44. http://www.ejaet.com/PDF/6-8/EJAET-6-8-38-44
  • Dizon, J. R. C., Espera, A. H., Chen, Q., & Advincula, R. C. (2018). Mechanical characterization of 3D-printed polymers. Additive Manufacturing, 20, 44–67. https://doi.org/10.1016/j.addma.2017.12.002
  • Enrique, L., & Vega-rios, A. (2019). Filament Extrusion and Its 3D Printing of Poly ( Lactic Acid ) / Poly ( Styrene- co -Methyl Methacrylate ) Blends. Applied Sciences. https://doi.org/10.3390/app9235153
  • Gök, K., & Gök, A. (2020). Numeric Simulation of Effect on The CBN Cutting Tool Stresses of Austempering Process. Journal of Polytechnic, 23(1), 37–44. https://doi.org/10.2339/politeknik.452739
  • Gregor-Svetec, D., Leskovšek, M., Vrabič Brodnjak, U., Stankovič Elesini, U., Muck, D., & Urbas, R. (2020). Characteristics of HDPE/cardboard dust 3D printable composite filaments. Journal of Materials Processing Technology, 276(March 2019), 116379. https://doi.org/10.1016/j.jmatprotec.2019.116379
  • Kariz, M., Sernek, M., Obućina, M., & Kuzman, M. K. (2018). Effect of wood content in FDM filament on properties of 3D printed parts. Materials Today Communications, 14(December 2017), 135–140. https://doi.org/10.1016/j.mtcomm.2017.12.016
  • McIlroy, C., & Olmsted, P. D. (2017). Disentanglement effects on welding behaviour of polymer melts during the fused-filament-fabrication method for additive manufacturing. Polymer, 123, 376–391. https://doi.org/10.1016/j.polymer.2017.06.051
  • Osswald, T. A., Puentes, J., & Kattinger, J. (2018). Fused filament fabrication melting model. Additive Manufacturing, 22(April), 51–59. https://doi.org/10.1016/j.addma.2018.04.030
  • Peng, F., Vogt, B. D., & Cakmak, M. (2018). Complex flow and temperature history during melt extrusion in material extrusion additive manufacturing. Additive Manufacturing, 22(May), 197–206. https://doi.org/10.1016/j.addma.2018.05.015
  • Print Quality Guide. (2020). https://www.simplify3d.com/support/print-quality-troubleshooting/curling-or-rough-corners/
  • Recebli, Z., Gedik, E., & Selimli, S. (2016). Electrical field effect on three-dimensional magnetohydrodynamic pipe flow: A CFD study. Progress in Computational Fluid Dynamics, 16(4), 261–270. https://doi.org/10.1504/PCFD.2016.077293
  • Selimli, S., & Recebli, Z. (2018). Impact of electrical and magnetic field on cooling process of liquid metal duct magnetohydrodynamic flow. Thermal Science, 22(1), 263–271. https://doi.org/10.2298/TSCI151110147S
  • Selimli, S., Recebli, Z., & Arcaklioglu, E. (2015). MHD numerical analyses of hydrodynamically developing laminar liquid lithium duct flow. International Journal of Hydrogen Energy, 40(44), 15358–15364. https://doi.org/10.1016/j.ijhydene.2015.02.020
  • Shah, J., Snider, B., Clarke, T., Kozutsky, S., Lacki, M., & Hosseini, A. (2019). Large-scale 3D printers for additive manufacturing: design considerations and challenges. The International Journal of Advanced Manufacturing Technology, 104(2), 1–15. https://doi.org/10.1007/s00170-019-04074-6
  • Singh, R., Singh, G., Singh, J., & Kumar, R. (2019). Investigations for tensile, compressive and morphological properties of 3D printed functional prototypes of PLA-PEKK-HAp-CS. Journal of Thermoplastic Composite Materials. https://doi.org/10.1177/0892705719870595
  • Song, Y., Li, Y., Song, W., Yee, K., Lee, K. Y., & Tagarielli, V. L. (2017). Measurements of the mechanical response of unidirectional 3D-printed PLA. Materials and Design, 123, 154–164. https://doi.org/10.1016/j.matdes.2017.03.051
  • Turner, B. N., & Gold, S. A. (2015). A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness. Rapid Prototyping Journal, 21(3), 250–261. https://doi.org/10.1108/RPJ-02-2013-0017
  • Turner, B. N., Strong, R., & Gold, S. A. (2014). A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyping Journal, 20(3), 192–204. https://doi.org/10.1108/RPJ-01-2013-0012
  • Vukicevic, M., Mosadegh, B., Min, J. K., & Little, S. H. (2017). Cardiac 3D Printing and its Future Directions. JACC: Cardiovascular Imaging, 10(2), 171–184. https://doi.org/10.1016/j.jcmg.2016.12.001
  • Wong, K. V., & Hernandez, A. (2012). A Review of Additive Manufacturing. ISRN Mechanical Engineering, 2012, 1–10. https://doi.org/10.5402/2012/208760
  • Yang, C., Tian, X., Li, D., Cao, Y., Zhao, F., & Shi, C. (2017). Influence of thermal processing conditions in 3D printing on the crystallinity and mechanical properties of PEEK material. Journal of Materials Processing Technology, 248(May), 1–7. https://doi.org/10.1016/j.jmatprotec.2017.04.027
There are 30 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Hasan Demir 0000-0001-5424-7242

Publication Date August 31, 2022
Published in Issue Year 2022

Cite

APA Demir, H. (2022). Novel Extruder Heat Block Designs to Improve the Thermal Efficiency of 3D Printers. Avrupa Bilim Ve Teknoloji Dergisi(38), 491-500. https://doi.org/10.31590/ejosat.1050661