Conference Paper
BibTex RIS Cite

Toprak İşleme ve Drenajın Siltli-Tınlı Bir Toprağın Fiziksel Özellikleri ve Sızma Karekterleri Üzerine Mevsimsel Etkilerinin İncelenmesi

Year 2021, , 1011 - 1023, 31.12.2021
https://doi.org/10.31590/ejosat.1050860

Abstract

Yüzey akış, buharlaşma-terleme, ve toprak su tutma kapasitesi gibi toprak hidrolojik süreçlerinin daha iyi tahmin edilmesi ve anlaşılması için toprak işleme ve drenaj yönetiminin toprakta infiltrasyon karekteristiklerine etkilerinin araştırılmasına ihtiyaç duyulmaktadır. Bu çalışmanın amaçları i) toprak işleme ve drenaj tekniklerinin toprak fiziksel özelliklerine ve toprakta infiltrasyona etkilerini izlemek ve ii) deneme parsellerinden ölçümlerle üretilen infiltrasyon modellerinin tahmin süreçlerindeki hassasiyetlerinin tahminci model ve optimize edilen model arasında karşılaştırmaktır. Araştırmanın yapıldığı arazi Crosby-Kokomo toprak serileri (ince, karışık, mezik, Aerik Okrakualf (havalanma problemi olmayan okrik epipedona sahip sıklıkla su basmasına maruz kalan Alfısol) ve ince, karışık, mezik, sıklıkla su basmasına maruz kalan tipik arcillik horizonlu Mollisol) büyük toprak guruplarını içermektedir. Deneme deseni üç paralelli, ikişer doza sahip, iki toprak işleme ve iki drenaj faktörünü içeren 2-faktöriyel rastgele deneme deseni olup, deneme konuları (çizel işleme (CH), sıfır işleme (NT) ve drenajlı (D) ve drenajsız (UD)) parsellerden meydana gelmektedir. Toprak kuru hacim ağırlığı (ρb), doygunluk hidrolik iletkenlik değeri (Ksat), toprak nem karakteristik eğrisi (SWRC), süzme kapasitesi ve piyezometrik su yükü seviyesi her parselde ölçülmüştür. Toprak drenaj debileri parsellerdeki her lateral boruda ve drenaj sistem çıkış ağzında ölçülmüştür. Araştırma sonuçları her iki toprak işleme yöntemi içerisinde her iki toprak derinliğinde de drenajsız uygulamaların drenajlı uygulamalara göre her zaman daha yüksek Ksat değerine sahip olduklarını göstermiştir. Her iki drenaj uygulaması içerisinde her iki derinlik için yapılan karşılaştırmada çizel parseller sıfır işleme parsellerinden her zaman daha büyük Ksat değerlerine sahip olmuşlardır. Yüzey toprağında drenajlı parseller toprak hacim ağırlığını sırasıyla sıfır işleme+drenajsız uygulama parsellerinde %4,2-0,8 kadar düşürürken, yüzey altı toprak katmanında (15-30 cm katmanı) çizel+drenajsız parsellerde %4,61-6,7 kadar azaltmıştır. Çizel+drenajsız parseller hariç, drenajsız uygulamalar her iki derinlik katmanında da drenajlı uygulamalara göre bütün toprak işleme parsellerinde daha yüksek kuru hacim ağırlığı değerine sahip olmuştur. Sıfır işleme+drenaj uygulamaları çizel toprak işlemeye göre her iki toprak derinliğinde de daha yüksek kuru hacim ağırlığı değerlerine sahiptirler. Drenaj parselleri drenajsız parsellere göre gözenek çapı dağılımını önemli derecede artırmıştır (p<0,05). Drenajlı parseller (%9.37) drenajsız parsellere (%8.96) göre önemli miktarda daha fazla depo por ve etkili por (-10kPa negatif basınçta su dolu porlar) hacmine sahip bulunmuştur(p<0.05). Sıfır işlemeli parseller çizel parsellere göre daha anlık yüksek infiltrasyon değerlerine sahip olmuştur ve drenajlı parseller drenajsız parsellere göre daha yüksek infiltrasyon oranı ve eklemeli infiltrasyon değerlerine sahip olmuşlardır. Toprak fiziksel özelliklerinde meydana gelen değişimler güçlü bir şekilde ve önemli derecede mevsime, toprak derinliğine ve yağış miktarlarına bağlı olduğu görülmektedir (p<0,05). Optimize edilmiş infiltrasyon modelleri her bir deneme konusu için tahminci modele göre daha geniş bir aralığı tahmin etme özelliğine sahip oldukları görülmüştür. Buda gösteriyor ki optimizasyon süreci tarla ölçümleriyle elde edilen tahminci modelden daha yüksek hassasiyet ve geçerlilik derecesine sahiptir. Sonuç olarak, toprak kuru hacim ağırlığı, Ksat, yüksek makropor miktarları, toprağın infiltrasyon oranları, su tutma kapasitesi ve drenaj debilerine karşı tepkisini mevsimsel olarak korumalı tarım ve drenaj etkisi altında önemli derecede etkileyebilmekte ve bu etki nedeniyle korumalı tarım ve drenaj pratikleri daha çok su tutma potansiyeli tetiklemektedir/geliştirmektedir.

Project Number

OHO00835

References

  • Abid, M., & Lal, R. (2009). Tillage and drainage impact on soil quality: II. Tensile strength of aggregates, moisture rentention and water infiltration. Soil Till. Res., 103,364-372.
  • Abid, M., & Lal, R. (2008). Tillage and drainage impact on soil quality: I. Aggregate stability, carbon and nitrogen pools. Soil Till. Res., 100, 89-98.
  • Adeniji, F. A., Umara, B. G., Dibal, J. M., & Amali, A.A. (2013). Validation of infiltration rates with soil texture. A laboratory study. International Journal of Engineering and innovative Technology, 3(2), 454-459.
  • Akis, R. (1999). Tillage and drainage impact on soil physical properties and nitrate movement in a silt loam soil in Ohio. MS Thesis. The Ohio State university, Columbus, Ohio, USA., 1-148.
  • Angelaki, A., Sakellariou-Makrantonaki, M., Tzimopoulos, & C. (2013). Theoretical and experimental research of cumulative infiltration. Transp. Porous Meida, 100(2), 247-257.
  • Bahattacharyya, R., Prakash, V., Kundu, S., Srivistava, A.K., & Gupta, H.S. (2009). Soil aggregation and organic matter in a sandy clay loam soil of the Indian Himalayas under different tillage and crop regimes. Agric. Ecosyst. Environ., 132,126-134.
  • Blake, G. R., & Hartge, K. H. (1986). Particle density. Methods of soil analysis: Part 1 physical and mineralogical methods, 5, 377-382.
  • Bouwer, H. (1986). Intake rate: cylinder infliltrometer. In: A. Klute (Ed.), Methods of Soil Analysis, Part I. Physical and Mineralogical Methods. Agronomy Monograph No. 9. Madison, WI, 825-844.
  • Bughici, T., & Wallach, R. (2016). Formation of soil–water repellency in olive orchards and its influence on infiltration pattern. Geoderma, 262, 1-11.
  • Cassel, D. K., Nielsen, D. R. (1986). Field capacity and available water capacity. In A. Klute (ed.). Methods of Soil analysis. Part 1. Agronomy no 9. American Soc. of Agron. 901-926.
  • Carvalho, D.F., Eduardo, E.N., Almeida, W.S., Santos, L.A.F., & Alvez, S. A. (2015). Water erosion and soil water infiltration in diffefrent stages of corn development and tillage systems. Rev. Bras. De Eng. Agric. E Ambiental, 19, 1076-1082.
  • Czyzyk, F., & Swierkot, Z. (2017). Recharging infiltration of precipitation water through the light soil in the absence of surface runoff. J. Water L. Dev., 32, 25-30.
  • Dao, T.H. (1993). Tillage and winter wheat residue management effects of water infiltration and storage. Soil Sci. Soc. Am. J., 57,1586–1595.
  • Dashtaki, S.G., Homaee, M., Mahdian, M.H., & Kouchakzadeh, M. (2009). Site-dependence performance of infiltration models. Water Resource Management, 23, 2777-2790. de Almedia, W.S., Panachuki, F., de Oliveria, P.T.S., da Silva Menezes, R., Sobrinho, T.A., & de Carvalho, D.F. (2018). Effect of soil tillage and vegetal cover on soil water infiltration. Soil Tillage Res., 175, 130-138.
  • Derpesh, R., Franzluebbers, A.J., Duike, S.W., Reicosky, D.C., Koeller, K., Freidrich, T., Sturny, W.G., Sa, J, C.M., & Weiss, K. (2014). Why do we need to standardize no-tillage research? Soil Till. Res., 137, 16-22.
  • Fodor, N., Sandor, R., Organus, T., Lichner, L., & Rajkai, K. (2011). Evaluation method dependency of measured saturated hydraulic conductivity. Geoderma, 165, 60-68.
  • Franzluebbers, A.J. (2002). Water infiltration and soil structure related to organic matter and its stratification with depth. Soil Till. Res., 56, 1997-2005.
  • Freese, R.C., Cassel, D.K., & Denton, H.P. (1993). Infiltration in a Piedmont soil under three tillage systems. J. Soil Water Conserv., 48, 214–218.
  • Goddard, T., Zoebisch, M., Gan., Y., Ellis, W., Watson, A., & Sombatpaint, S. (2008). No-till farming systems. World Association of Soil and Water conservation (WASWC). Special Publication No 3.
  • Gopi, G., & Shanmugasundaram, K. (2019). Philip’s and Green-Ampt model capability ot estimate infiltration for soils of Mahilambadi, Tamil Nadu State, India. Int. J. Chem. Stud., 7, 1426-1429.
  • Greenland, D.J. (1979). Structural organisation of soils and crop production. In: R. Lai and D.J. Greenland (ed.) Soil physical properties and crop production in the tropics. John Wiley and Sons, New York, 47-56.
  • Hernanedz, T.D.B., Slater, B.K., Corbala, R.T., & Shaffer, J.M. (2019). Assessment of long-term tillage practices of two Ohio soils. Soil and Tillage Research,186, 270-279.
  • Huang, M. Liang, T., Wang, L., & Zhou, C. (2015). Effects of no-tillage systems on soil physical properties and carbon sequestration under long-term wheat-maize double cropping system. Catena, 128,195-202.
  • Irmak, S., Odhiambo, L.O., Kranz, W.L.E., & Eisenhauer, D.E. (2011). Irrigation efficiency and uniformity and crop water use efficiency. University of Nebrasca-Lincoln Exttention. Biol. Syst/ Eng. Pap. Publ., 451.
  • Jastrow, J.D., & Miller, R.M. (1991). Methods of assessing the effects of the biota on soil structure. Agric. Ecosyst. Env., 34, 279-303.
  • Jha, M. K., Mahapatra, S., Mohan, C., & Pohshana, C. (2019). infiltration characteristics of lateritic vadose zone: field experiment and modeling. Soil and Tillage Research, 187, 219-234.
  • Kay, B.D. (1990). Rate of change of soil structure under different cropping systems. Adv. Soil Sci., 12,1-52.
  • Khasraei, A., Abyaneh, H.Z., Jovzi, M., & Albaji, M. (2021). Determining the accuracy of different water infiltration models in lands under wheat and bean cultivation. Journal of Hydrology, http://doi.org/10.1016/j.jhyrol.2021127122
  • Klute, A. (1986). Water retention: laboratory methods. Methods of soil analysis: Part 1 Physical and mineralogical methods, 5, 635-662.
  • Klute, A., Dirksen, C. (1986). Hydraulic conductivity and diffusivity: laboratory methods. In: Klute, A. (Ed.), Methods of Soil Analysis-Part I- Physical and Mineralogical Methods. American Society of agronomy, Madison, 687-734.
  • Kutílek, M., Jendele, L., & Panayiotopoulos, K.P. (2006). The influence of uniaxial compression upon pore size distribution in bi-modal soils. Soil and Tillage Research, 86, 27-37.
  • Kutílek M., & Krejča M. (1987): A three-parameters infiltration equation of the Philip’s type solution. Vodohospodářský časopis, 35: 52–61. (in Czech)
  • Lal, R., Shukula, M.K. (2004). Principles of Soil Physics. Marcel Dekker, New York, 716.
  • Lal, R., & Fausey, N.R. (1993). Drainage and tillage effects on a Crosby-Kokomo soil association in Ohio IV. Soil physical properties. Soil Technol., 6, 123-135.
  • Lal, R., Logan, T.J., & Fausey, N.R. (1989). Long term tillage and wheel traffic effects on a poorly drained mollic ochraqualf in North West Ohio. 2. Infiltrability, surface runoff, subsoil flow and sediment transport. Soil Till. Res., 14, 359-373.
  • Mahapatra, S., Jha, M.K., Biswal, S., & Senapati, D. (2020). Assessing variability of infiltrarion charcteristics and reliability of infiltration midels in a tropical subhumid region of India. Sci. Rep., 10, 1-18.
  • McGarry, D., Bridge, B.J., & Radford, B.J. (2000). Contrasting soil physical properties after zero and traditional tillage of an alluvial soil in the semi-arid subtropics. Soil Till. Res., 105-115.
  • Messing, I., & Jarvis, N.J. (1993). Temporal variation in the hydraulic conductivity of a tiled clay soil as measured by tension infiltrometers. Journal of Soil Science, 44, 11-24.
  • Moriera, H. W., Tormena, C.A., Karlen, D. L., da Silva, A. P., Keller, Thomas, & Betioli, E. Jr., (2016). Seasonal changes in soil physical properties under long-term no tillage. Soil and Tillage Research, 160, 53-64.
  • Nakijama, T., & Lal, R. (2014). Tillage and drainage management effect on soil gas diffusivity. Soil Till. Res., 135, 71-78.
  • Osunbitan, J.A., Oyedele, D.J., & Adekulu, K.O. (2005). Tillage effect on bulk density, hydraulic conductivity and strength of a loamy sandy soil in southwestern Nigeria, Soil Till. Res., 82, 57-64.
  • Parlange, J. Y. (1971). Theory of water-movement in soils: 2. One-dimensional infiltration. Soil Science, 111(3), 170-174.
  • Philip, J.R. (1957). The theory of infiltration. 4. Sorptivity and algebraic infiltration equations. Soil Sci., 84, 257–264.
  • Rajasekhar, M., Umabai, D., Krupavathi, K., Navyasai, I., & Gopi, R. (2018). Development and comparison of infiltration models and their field validartion. Int. J. Curr. Microbiol. Appl. Sci., 7, 2691-2701.
  • Randall, G.W., & Iragavarapu, T.K. (1995). Impact of long tillage systems for continuous corn on nitrate leaching to tile drainage. J. Env. Qual., 24, 360-366.
  • Rashidi, M, Ahmedbeyki, A., & Hajiaghhaei, A. (2014). Prediction of soil infiltrationrate based on some physical properties of soil. American-Euroasian journal of Agricultural and Environmental Science, 14(12), 1359-1367.
  • Roseberg, R.J., & McCoy, E.L. (1992). Tillage and traffic-induced changes in macroporosity and macropore community: Air permeability assessment. Soil Sci. Soc. Am. J., 56, 1261–1267.
  • Shkula, M.K., Lal, R., & Ebinger, M. (2003). Tillage effects on physical ad hydrological properties of a typic argiaquoll in central Ohio. Soil. Sci., 168, 802-811.
  • Silva, S.G.C., Giarola, N.F.B., Sa, J.C.M., Tormena, C.A., & da Silva, A.P. (2012). Temporary effect of chiseling on the compaction of a Rhodic Hapludox under no-tillage. R. Bras. Ci. Solo, 36, 547-555.
  • Soane, B.D., Ball, B.C., Arvidsson, J., Basch, G., Moreno, F., & Roger-Estrade, J. (2012). No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment, Soil and Tillage Research, 118, 66-87.
  • Soil Survey Stuff, (1996). Keys to Soil Taxonomy, 7th ed. United States Department of Agriculture, Natural Resources Conservation Service, Washington, DC, USA., 644.
  • Sullivan, M. D. (1997). Dissolved organic carbon and soil solution pH as affected by drainage, tillage, depth and season in agricultural watershed. MS Thesis. The Ohio State university, Columbus, Ohio, USA., 1-121.
  • Thornley, J.H.M., & Cannell, M.G.R. (2000). Managing forests for wood yield and carbon storage: a theoretical study. Tree Physiol., 20(7), 477-484.
  • USDA-NRCS, (2006). Official soil series descriptions. Soil Survey Division. In: http://ortho.ftw.nrcs;usda.gov/cgi-bin/osd/osdname.cgi.

Evaluation of Seasonal Effects of Tillage and Drainage Management Practices on Soil Physical Properties and Infiltration Characteristics in a Silt-Loam Soil

Year 2021, , 1011 - 1023, 31.12.2021
https://doi.org/10.31590/ejosat.1050860

Abstract

The impacts of tillage and drainage managements on soil infiltration characteristics need to be scrutinized for a better understanding and prediction of soil hydrological processes, such as runoff, evapotranspration and soil water storage. The objectives of this study were i) to evaluate the effects of tillage and drainage practices on soil physical properties and water infiltration, and ii) to compare prediction accuracy of estimated and optimized infiltration model characteristics for the observed and predicted quantities of infiltration process in the soil. The research site contains the Crosby-Kokomo soil series (fine, mixed, mesic, Aeric Ochraqualf and fine, mixed, mesic Typic Argiaquoll, respectively). The experiment was a two factorial completely randomized block design with two levels of tillage (chisel plow (CH) and no-till (NT)) and two levels of drainage (drained (D) and undrained (UD)) with three replicates. Soil bulk density (ρb), saturated hydraulic conductivity (Ksat), soil moisture retention curves (SMRC), soil infiltration capacity and piezometric water head in each treatment were also measured. Soil drainage flows at each drain lateral and outlet discharges were measured. The results showed that The UD treatments were always higher for Ksat values than the D treatments regardless of the tillage practices for both depths and the CH treatments always had greater Ksat values than those in the NT at both the depths regardless of drainage practices. The D treatments reduced the soil bulk density by 4.2 and 0.8 % in the surface soil and 4.61 and 6.7% for the subsurface soil in respect to no-till-UD and chisel-UD treatments. The UD treatments had higher bulk density at both of the depths than those of the D treatments regardless of tillage practices except the CH-UD treatments. The NT had higher bulk density at both depths of the soil than those of the CH treatments regardless of drainage practices. Drainage increased pore size distribution significantly higher than the UD treatments (p<0.05). The D treatments had significantly higher storage pores and effective pores (9.37%) (pores retaining water at -10kPa pressure head) than the ones in the UD treatments (8.96%) (p<0.05). The NT treatments yielded higher infiltration rates than the CH and the D treatments produced higher apparent infiltration rates and cumulative infiltration values than the UDs. The changes in soil physical properties were found to be strongly and significantly dependent on season, soil depth, and rainfall (p<0.05). The optimized infiltration models predicted larger range of infiltration rate values for each treatment than the estimated infiltration models, indicating that the optimization produced higher accuracy and validity of the predicted models in the field. To conclude, soil dry bulk density, soil saturated hydraulic conductivity, and increased macropore volumes can significantly impact soil hydrological responses to soil water infiltration, soil water storage and drainage flow under conservation tillage and drainage management practices on a seasonal basis. This impact enhances greater potential to capture water in soil for future crop use in the study site.

Supporting Institution

Ohio State University

Project Number

OHO00835

Thanks

This research study was conducted in the Kenny Road Farm/Waterman Farm, Columbus, OH, in Soil Science, School of Environment and Natural Resources, Ohio State University, in forward to the USDA-supported project: Improving sub-surface drainage of clay soils, Project no: OHO00835, (https://portal.nifa.usda.gov/web/crisprojectpages/0098786-improving-sub-surface-drainage-of-clay-soils.html).

References

  • Abid, M., & Lal, R. (2009). Tillage and drainage impact on soil quality: II. Tensile strength of aggregates, moisture rentention and water infiltration. Soil Till. Res., 103,364-372.
  • Abid, M., & Lal, R. (2008). Tillage and drainage impact on soil quality: I. Aggregate stability, carbon and nitrogen pools. Soil Till. Res., 100, 89-98.
  • Adeniji, F. A., Umara, B. G., Dibal, J. M., & Amali, A.A. (2013). Validation of infiltration rates with soil texture. A laboratory study. International Journal of Engineering and innovative Technology, 3(2), 454-459.
  • Akis, R. (1999). Tillage and drainage impact on soil physical properties and nitrate movement in a silt loam soil in Ohio. MS Thesis. The Ohio State university, Columbus, Ohio, USA., 1-148.
  • Angelaki, A., Sakellariou-Makrantonaki, M., Tzimopoulos, & C. (2013). Theoretical and experimental research of cumulative infiltration. Transp. Porous Meida, 100(2), 247-257.
  • Bahattacharyya, R., Prakash, V., Kundu, S., Srivistava, A.K., & Gupta, H.S. (2009). Soil aggregation and organic matter in a sandy clay loam soil of the Indian Himalayas under different tillage and crop regimes. Agric. Ecosyst. Environ., 132,126-134.
  • Blake, G. R., & Hartge, K. H. (1986). Particle density. Methods of soil analysis: Part 1 physical and mineralogical methods, 5, 377-382.
  • Bouwer, H. (1986). Intake rate: cylinder infliltrometer. In: A. Klute (Ed.), Methods of Soil Analysis, Part I. Physical and Mineralogical Methods. Agronomy Monograph No. 9. Madison, WI, 825-844.
  • Bughici, T., & Wallach, R. (2016). Formation of soil–water repellency in olive orchards and its influence on infiltration pattern. Geoderma, 262, 1-11.
  • Cassel, D. K., Nielsen, D. R. (1986). Field capacity and available water capacity. In A. Klute (ed.). Methods of Soil analysis. Part 1. Agronomy no 9. American Soc. of Agron. 901-926.
  • Carvalho, D.F., Eduardo, E.N., Almeida, W.S., Santos, L.A.F., & Alvez, S. A. (2015). Water erosion and soil water infiltration in diffefrent stages of corn development and tillage systems. Rev. Bras. De Eng. Agric. E Ambiental, 19, 1076-1082.
  • Czyzyk, F., & Swierkot, Z. (2017). Recharging infiltration of precipitation water through the light soil in the absence of surface runoff. J. Water L. Dev., 32, 25-30.
  • Dao, T.H. (1993). Tillage and winter wheat residue management effects of water infiltration and storage. Soil Sci. Soc. Am. J., 57,1586–1595.
  • Dashtaki, S.G., Homaee, M., Mahdian, M.H., & Kouchakzadeh, M. (2009). Site-dependence performance of infiltration models. Water Resource Management, 23, 2777-2790. de Almedia, W.S., Panachuki, F., de Oliveria, P.T.S., da Silva Menezes, R., Sobrinho, T.A., & de Carvalho, D.F. (2018). Effect of soil tillage and vegetal cover on soil water infiltration. Soil Tillage Res., 175, 130-138.
  • Derpesh, R., Franzluebbers, A.J., Duike, S.W., Reicosky, D.C., Koeller, K., Freidrich, T., Sturny, W.G., Sa, J, C.M., & Weiss, K. (2014). Why do we need to standardize no-tillage research? Soil Till. Res., 137, 16-22.
  • Fodor, N., Sandor, R., Organus, T., Lichner, L., & Rajkai, K. (2011). Evaluation method dependency of measured saturated hydraulic conductivity. Geoderma, 165, 60-68.
  • Franzluebbers, A.J. (2002). Water infiltration and soil structure related to organic matter and its stratification with depth. Soil Till. Res., 56, 1997-2005.
  • Freese, R.C., Cassel, D.K., & Denton, H.P. (1993). Infiltration in a Piedmont soil under three tillage systems. J. Soil Water Conserv., 48, 214–218.
  • Goddard, T., Zoebisch, M., Gan., Y., Ellis, W., Watson, A., & Sombatpaint, S. (2008). No-till farming systems. World Association of Soil and Water conservation (WASWC). Special Publication No 3.
  • Gopi, G., & Shanmugasundaram, K. (2019). Philip’s and Green-Ampt model capability ot estimate infiltration for soils of Mahilambadi, Tamil Nadu State, India. Int. J. Chem. Stud., 7, 1426-1429.
  • Greenland, D.J. (1979). Structural organisation of soils and crop production. In: R. Lai and D.J. Greenland (ed.) Soil physical properties and crop production in the tropics. John Wiley and Sons, New York, 47-56.
  • Hernanedz, T.D.B., Slater, B.K., Corbala, R.T., & Shaffer, J.M. (2019). Assessment of long-term tillage practices of two Ohio soils. Soil and Tillage Research,186, 270-279.
  • Huang, M. Liang, T., Wang, L., & Zhou, C. (2015). Effects of no-tillage systems on soil physical properties and carbon sequestration under long-term wheat-maize double cropping system. Catena, 128,195-202.
  • Irmak, S., Odhiambo, L.O., Kranz, W.L.E., & Eisenhauer, D.E. (2011). Irrigation efficiency and uniformity and crop water use efficiency. University of Nebrasca-Lincoln Exttention. Biol. Syst/ Eng. Pap. Publ., 451.
  • Jastrow, J.D., & Miller, R.M. (1991). Methods of assessing the effects of the biota on soil structure. Agric. Ecosyst. Env., 34, 279-303.
  • Jha, M. K., Mahapatra, S., Mohan, C., & Pohshana, C. (2019). infiltration characteristics of lateritic vadose zone: field experiment and modeling. Soil and Tillage Research, 187, 219-234.
  • Kay, B.D. (1990). Rate of change of soil structure under different cropping systems. Adv. Soil Sci., 12,1-52.
  • Khasraei, A., Abyaneh, H.Z., Jovzi, M., & Albaji, M. (2021). Determining the accuracy of different water infiltration models in lands under wheat and bean cultivation. Journal of Hydrology, http://doi.org/10.1016/j.jhyrol.2021127122
  • Klute, A. (1986). Water retention: laboratory methods. Methods of soil analysis: Part 1 Physical and mineralogical methods, 5, 635-662.
  • Klute, A., Dirksen, C. (1986). Hydraulic conductivity and diffusivity: laboratory methods. In: Klute, A. (Ed.), Methods of Soil Analysis-Part I- Physical and Mineralogical Methods. American Society of agronomy, Madison, 687-734.
  • Kutílek, M., Jendele, L., & Panayiotopoulos, K.P. (2006). The influence of uniaxial compression upon pore size distribution in bi-modal soils. Soil and Tillage Research, 86, 27-37.
  • Kutílek M., & Krejča M. (1987): A three-parameters infiltration equation of the Philip’s type solution. Vodohospodářský časopis, 35: 52–61. (in Czech)
  • Lal, R., Shukula, M.K. (2004). Principles of Soil Physics. Marcel Dekker, New York, 716.
  • Lal, R., & Fausey, N.R. (1993). Drainage and tillage effects on a Crosby-Kokomo soil association in Ohio IV. Soil physical properties. Soil Technol., 6, 123-135.
  • Lal, R., Logan, T.J., & Fausey, N.R. (1989). Long term tillage and wheel traffic effects on a poorly drained mollic ochraqualf in North West Ohio. 2. Infiltrability, surface runoff, subsoil flow and sediment transport. Soil Till. Res., 14, 359-373.
  • Mahapatra, S., Jha, M.K., Biswal, S., & Senapati, D. (2020). Assessing variability of infiltrarion charcteristics and reliability of infiltration midels in a tropical subhumid region of India. Sci. Rep., 10, 1-18.
  • McGarry, D., Bridge, B.J., & Radford, B.J. (2000). Contrasting soil physical properties after zero and traditional tillage of an alluvial soil in the semi-arid subtropics. Soil Till. Res., 105-115.
  • Messing, I., & Jarvis, N.J. (1993). Temporal variation in the hydraulic conductivity of a tiled clay soil as measured by tension infiltrometers. Journal of Soil Science, 44, 11-24.
  • Moriera, H. W., Tormena, C.A., Karlen, D. L., da Silva, A. P., Keller, Thomas, & Betioli, E. Jr., (2016). Seasonal changes in soil physical properties under long-term no tillage. Soil and Tillage Research, 160, 53-64.
  • Nakijama, T., & Lal, R. (2014). Tillage and drainage management effect on soil gas diffusivity. Soil Till. Res., 135, 71-78.
  • Osunbitan, J.A., Oyedele, D.J., & Adekulu, K.O. (2005). Tillage effect on bulk density, hydraulic conductivity and strength of a loamy sandy soil in southwestern Nigeria, Soil Till. Res., 82, 57-64.
  • Parlange, J. Y. (1971). Theory of water-movement in soils: 2. One-dimensional infiltration. Soil Science, 111(3), 170-174.
  • Philip, J.R. (1957). The theory of infiltration. 4. Sorptivity and algebraic infiltration equations. Soil Sci., 84, 257–264.
  • Rajasekhar, M., Umabai, D., Krupavathi, K., Navyasai, I., & Gopi, R. (2018). Development and comparison of infiltration models and their field validartion. Int. J. Curr. Microbiol. Appl. Sci., 7, 2691-2701.
  • Randall, G.W., & Iragavarapu, T.K. (1995). Impact of long tillage systems for continuous corn on nitrate leaching to tile drainage. J. Env. Qual., 24, 360-366.
  • Rashidi, M, Ahmedbeyki, A., & Hajiaghhaei, A. (2014). Prediction of soil infiltrationrate based on some physical properties of soil. American-Euroasian journal of Agricultural and Environmental Science, 14(12), 1359-1367.
  • Roseberg, R.J., & McCoy, E.L. (1992). Tillage and traffic-induced changes in macroporosity and macropore community: Air permeability assessment. Soil Sci. Soc. Am. J., 56, 1261–1267.
  • Shkula, M.K., Lal, R., & Ebinger, M. (2003). Tillage effects on physical ad hydrological properties of a typic argiaquoll in central Ohio. Soil. Sci., 168, 802-811.
  • Silva, S.G.C., Giarola, N.F.B., Sa, J.C.M., Tormena, C.A., & da Silva, A.P. (2012). Temporary effect of chiseling on the compaction of a Rhodic Hapludox under no-tillage. R. Bras. Ci. Solo, 36, 547-555.
  • Soane, B.D., Ball, B.C., Arvidsson, J., Basch, G., Moreno, F., & Roger-Estrade, J. (2012). No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment, Soil and Tillage Research, 118, 66-87.
  • Soil Survey Stuff, (1996). Keys to Soil Taxonomy, 7th ed. United States Department of Agriculture, Natural Resources Conservation Service, Washington, DC, USA., 644.
  • Sullivan, M. D. (1997). Dissolved organic carbon and soil solution pH as affected by drainage, tillage, depth and season in agricultural watershed. MS Thesis. The Ohio State university, Columbus, Ohio, USA., 1-121.
  • Thornley, J.H.M., & Cannell, M.G.R. (2000). Managing forests for wood yield and carbon storage: a theoretical study. Tree Physiol., 20(7), 477-484.
  • USDA-NRCS, (2006). Official soil series descriptions. Soil Survey Division. In: http://ortho.ftw.nrcs;usda.gov/cgi-bin/osd/osdname.cgi.
There are 54 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Rıfat Akış 0000-0002-0175-2939

Rattan Lal This is me 0000-0002-9016-2972

Project Number OHO00835
Publication Date December 31, 2021
Published in Issue Year 2021

Cite

APA Akış, R., & Lal, R. (2021). Evaluation of Seasonal Effects of Tillage and Drainage Management Practices on Soil Physical Properties and Infiltration Characteristics in a Silt-Loam Soil. Avrupa Bilim Ve Teknoloji Dergisi(32), 1011-1023. https://doi.org/10.31590/ejosat.1050860