Research Article
BibTex RIS Cite

Mikrobiyal olarak indüklenen kalsiyum karbonat çökeltisinin potansiyel kullanımı için Sporosarcina pasteurii' nin üreaz aktivitesinin araştırılması

Year 2022, , 1 - 4, 31.03.2022
https://doi.org/10.31590/ejosat.1061497

Abstract

Sporosarcina pasteurii'nin üreaz aktivitesi, farklı sayıda bakteri hücresi kullanılarak araştırıldı. Çözeltinin elektriksel iletkenliğindeki değişimi ölçmek için dinlenme halindeki Sporosarcina pasteurii hücreleri ve 500 mM üre çözeltisi beherlere eklendi. Elektriksel iletkenlik değerleri 10 dakika süreyle 0.382 mS/m ile 6.224 mS/m arasında değişiklik göstermiştir. En yüksek elektriksel iletkenlik, çözeltiye en fazla sayıda hücrenin (10*109) eklenmesi için ölçülmüştür. Dinlenme halindeki Sporosarcina pasteurii hücreleri ve 500 mM üre ve 500 mM CaCl2 çözeltisi de mikrobiyal olarak indüklenen CaCO3 çökeltisini gözlemlemek ve değerlendirmek için beherlere yerleştirildi. On dakikalık deneylerde mikrobiyal olarak indüklenen CaCO3 çökeltisi miktarı 4 mg ile 28 mg arasında ölçülmüştür. En yüksek CaCO3 çökeltisi miktarı, en az hücre sayısına (4 mg) kıyasla en fazla hücre sayısına sahip beherde (28 mg) gözlendi. Bu nedenle, mikrobiyal olarak indüklenen CaCO3 çökeltisi miktarının, beherlerdeki hücre sayısıyla doğru orantılı olarak arttığı söylenebilir. Deneyler, S. pasteurii'nin üreaz aktivitesinin hücre sayısına bağlı olduğunu ve daha fazla S. pasturii hücresinin kısa bir süre içinde daha fazla mikrobiyal olarak indüklenen CaCO3 çökeltisine yol açabileceğini göstermektedir.

References

  • Ramachandran SK, Ramakrishnan V, Bang SS. Remediation of concrete using micro-organisms. ACI Mater J. 98(1):3–9, 2001.
  • Eryürük, K., Yang, S., Suzuki, D., Sakaguchi, I., Akatsuka, T., Tsuchiya, T., and Katayama, A., Reducing hydraulic conductivity of porous media using CaCO3 precipitation induced by Sporosarcina pasteurii, Journal of Bioscience and Bioengineering, 119, 331–336, 2015.
  • Whiffin VS, Van Paassen LA, Harkes MP. Microbial Carbonate Precipitation as a Soil Improvement Technique. Geomicrobiol J., 24:417–23, 2007.
  • DeJong J. T., Mortensen B. M., Martinez B. C. and Nelson D. C. Bio-mediated soil improvement, Ecological Engineering, 36, 197-210, 2010.
  • Chou C.-W., Seagren E. A., ASCE A. M., Aydilek A. H., ASCE M. and Lai M. Biocalcification of sand through ureolysis, Journal of Geotechnical and Geoenvironmental Engineering, Vol.137, No.12, 1179-1189, 2011.
  • Wu J, Wang XB, Wang HF, Zeng RJ. Microbially induced calcium carbonate precipitation driven by ureolysis to enhance oil recovery. RSC Adv., 7(59):37382–91, 2017.
  • Ivanov Volodymyr and Chu Jian. Applications of microorganisms to geotechnical engineering for bioclogging abd biocementation of soil in situ, Rev.Environ. Sci. Biotechnol., 7, 139-153, 2008.
  • Mitchell A. C. and Ferris F. G. The Influence of Bacillus pasteurii on the nucleation and growth of calcium carbonate, Geomicrobiology Journal, 23, 213-226, 2006.
  • Tobler D. J., Cuthbert M. O., Greswell R. B., Siley M. S., Renshaw J. C., Handley-Sidhu S. and Phoenix V. R. Comparision of rates of ureolysis between S. pasteurii and an indigenous groundwater community under conditions required to precipitate large volumes of calcite, Geochimica et Cosmochimica Acta, 75, 3290-3301, 2011.
  • Stocks-Fischer S., Galinat J. K. and Bang S. S. Microbial precipitation of CaCO3, Soil Biology and Biochemistry, (31), 1563-1571, 1999.
  • Al-Thawadi S. and Cord-Ruwisch R. (2012) Calcium carbonate crystals formation by ureolytic bacteria isolated from Australian soil and sludge, Journal of Advanced Science and Engineering, 2, 12-26, 2012.
  • Mortensen B. M., Haber M. J., DeJong J. T., Caslake L. F. and Nelson D. C. Effects of environmental factors on microbial induced calcium carbonate precipitation, Journal of Applied Microbiology, 111, 338-349, 2011.
  • Harkes M. P., Van Paassen L. A., Booster J. L., Whiffin V. S. and Van Loosdrecht M. C. M. Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement, Ecological Engineering, 36, 112-117, 2010.
  • Okwadha G. D. O. and Li J. Optimum conditions for microbial carbonate precipitation, Chemosphere, 81, 1143-1148, 2010.
  • Terzis, D., Laloui, L. 3-D micro-architecture and mechanical response of soil cemented via microbial-induced calcite precipitation. Sci Rep 8, 1416, 2018.
  • Kaltwasser H., Kramer J., Conger W.R. Control of urease formation in certain aerobic bacteria. Arch. Microbiology, 81: 178–196, 1972.
  • Friedrich B., Magasanik B. Urease of Klebsiella aerogenesis: control of its synthesis by glutamine synthetase. J. Bacteriol, 8: 313–322, 1977.

Investigating the urease activity of Sporosarcina pasteurii for potential usage of microbially induced calcium carbonate precipitation

Year 2022, , 1 - 4, 31.03.2022
https://doi.org/10.31590/ejosat.1061497

Abstract

The urease activity of Sporosarcina pasteurii was investigated using different number of bacterial cells. Resting Sporosarcina pasteurii cells and 500 mM urea solution were placed into the beakers to measure the change in electrical conductivity of the solution. The electrical conductivity values were varied between 0.382 mS/m and 6.224 mS/m for 10 min. The highest electrical conductivity was measured for addition of the largest number of cells (10*109) to the solution. Resting Sporosarcina pasteurii cells and 500 mM urea and 500 mM CaCl2 solution were also placed into the beakers to observe and evaluate microbially induced CaCO3 precipitation. The amount of microbially induced CaCO3 precipitation was changed between 4 mg and 28 mg in the experiments for ten minutes. The highest amount of CaCO3 precipitation was observed in beaker with the highest number of cells (28 mg) than in those with the smallest number of cells (4 mg). Hence, the amount of microbially induced CaCO3 precipitation was increased in direct proportion to the cell number in the beakers. The experiments suggest that the urease activity S. pasteurii is depended on the number of cells and more cells of S. pasteurii leads more microbially induced CaCO3 precipitation in a short time period.

References

  • Ramachandran SK, Ramakrishnan V, Bang SS. Remediation of concrete using micro-organisms. ACI Mater J. 98(1):3–9, 2001.
  • Eryürük, K., Yang, S., Suzuki, D., Sakaguchi, I., Akatsuka, T., Tsuchiya, T., and Katayama, A., Reducing hydraulic conductivity of porous media using CaCO3 precipitation induced by Sporosarcina pasteurii, Journal of Bioscience and Bioengineering, 119, 331–336, 2015.
  • Whiffin VS, Van Paassen LA, Harkes MP. Microbial Carbonate Precipitation as a Soil Improvement Technique. Geomicrobiol J., 24:417–23, 2007.
  • DeJong J. T., Mortensen B. M., Martinez B. C. and Nelson D. C. Bio-mediated soil improvement, Ecological Engineering, 36, 197-210, 2010.
  • Chou C.-W., Seagren E. A., ASCE A. M., Aydilek A. H., ASCE M. and Lai M. Biocalcification of sand through ureolysis, Journal of Geotechnical and Geoenvironmental Engineering, Vol.137, No.12, 1179-1189, 2011.
  • Wu J, Wang XB, Wang HF, Zeng RJ. Microbially induced calcium carbonate precipitation driven by ureolysis to enhance oil recovery. RSC Adv., 7(59):37382–91, 2017.
  • Ivanov Volodymyr and Chu Jian. Applications of microorganisms to geotechnical engineering for bioclogging abd biocementation of soil in situ, Rev.Environ. Sci. Biotechnol., 7, 139-153, 2008.
  • Mitchell A. C. and Ferris F. G. The Influence of Bacillus pasteurii on the nucleation and growth of calcium carbonate, Geomicrobiology Journal, 23, 213-226, 2006.
  • Tobler D. J., Cuthbert M. O., Greswell R. B., Siley M. S., Renshaw J. C., Handley-Sidhu S. and Phoenix V. R. Comparision of rates of ureolysis between S. pasteurii and an indigenous groundwater community under conditions required to precipitate large volumes of calcite, Geochimica et Cosmochimica Acta, 75, 3290-3301, 2011.
  • Stocks-Fischer S., Galinat J. K. and Bang S. S. Microbial precipitation of CaCO3, Soil Biology and Biochemistry, (31), 1563-1571, 1999.
  • Al-Thawadi S. and Cord-Ruwisch R. (2012) Calcium carbonate crystals formation by ureolytic bacteria isolated from Australian soil and sludge, Journal of Advanced Science and Engineering, 2, 12-26, 2012.
  • Mortensen B. M., Haber M. J., DeJong J. T., Caslake L. F. and Nelson D. C. Effects of environmental factors on microbial induced calcium carbonate precipitation, Journal of Applied Microbiology, 111, 338-349, 2011.
  • Harkes M. P., Van Paassen L. A., Booster J. L., Whiffin V. S. and Van Loosdrecht M. C. M. Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement, Ecological Engineering, 36, 112-117, 2010.
  • Okwadha G. D. O. and Li J. Optimum conditions for microbial carbonate precipitation, Chemosphere, 81, 1143-1148, 2010.
  • Terzis, D., Laloui, L. 3-D micro-architecture and mechanical response of soil cemented via microbial-induced calcite precipitation. Sci Rep 8, 1416, 2018.
  • Kaltwasser H., Kramer J., Conger W.R. Control of urease formation in certain aerobic bacteria. Arch. Microbiology, 81: 178–196, 1972.
  • Friedrich B., Magasanik B. Urease of Klebsiella aerogenesis: control of its synthesis by glutamine synthetase. J. Bacteriol, 8: 313–322, 1977.
There are 17 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Kağan Eryürük 0000-0003-3993-839X

Publication Date March 31, 2022
Published in Issue Year 2022

Cite

APA Eryürük, K. (2022). Investigating the urease activity of Sporosarcina pasteurii for potential usage of microbially induced calcium carbonate precipitation. Avrupa Bilim Ve Teknoloji Dergisi(34), 1-4. https://doi.org/10.31590/ejosat.1061497