Research Article
BibTex RIS Cite

Uçağın Kanat Hücum Kenarında Buzdan Arındırma Performansını Etkileyen Parameterelerin Optimizasyonu

Year 2022, , 19 - 27, 31.03.2022
https://doi.org/10.31590/ejosat.1062495

Abstract

Bu çalışmada, uçuş esnasında tehlikeli durumlardan biri olan uçak kanat hücum kenarı üzerinde buz birikimi sayısal olarak araştırılmıştır. Hedef yüzey Tw=263.15 K derecede sabit tutulurken, giriş sıcaklığı Tin=473.15 K olarak m ̇=0.004 kg/s. ile sisteme iletilmiştir. Araştırma NACA 0015 kullanarak sayısal çalışmanın sabit piccolo tüp ölçüleri, jet açısı ve jetler ve jet-hedef yüzey mesafeleri için doğrulama çalışması ile başlamıştır. İkinci ve üçüncü aşamada farklı jet açıları (30°≤≤150°) altında X (4≤H/d≤8) ve Y (-1.25≤L/d≤1.25) yönünde değişen piccolo tüp pozisyonlarının buzdan arındırma performansını incelemektir. Dördüncü aşama buzdan arındırma sisteminin performansını maksimum taşınım ısı transfer ve minimum basınç azalımı durumu ile arttırmak için optimum H/d, L/d ve oranlarını belirlemektir. Optimizasyon çalışması Yüzey Cevap Metodolojisi kullanılarak yapılmıştır. Sonuç olarak, teklif edilen tasarımda en yüksek buzdan arındırma performansı ° L/d=0.0 ve H/d=4.0 kullanılarak başarılırken, optimizasyon çalışmaları maksimum ısı transfer oranı ve minimum basınç düşüşü değerini başarmak için  L/d ve H/d değerlerinin sırasıyla 55.45°, 0.0 ve 4.0 olması gerektiğimi göstermiştir.

References

  • L. Yi, H. Hu, C. li, Y. Zhang, S. Yang, M. Pan, Experimental investigation on enhanced flow and heat transfer performance of micro-jet impingement vapor chamber for high power electronics, Int. J. Therm. Sci. 173 (2022). https://doi.org/10.1016/j.ijthermalsci.2021.107380.
  • F. Selimefendigil, H.F. Öztop, Nanojet impingement cooling of an isothermal surface in a partially porous medium under the impact of an inclined magnetic field, J. Therm. Anal. Calorim. 141 (2020) 1875–1888. https://doi.org/10.1007/s10973-019-08839-9.
  • R. Ekiciler, M.S.A. Çetinkaya, K. Arslan, Effect of shape of nanoparticle on heat transfer and entropy generation of nanofluid-jet impingement cooling, Int. J. Green Energy. 17 (2020) 555–567. https://doi.org/10.1080/15435075.2020.1739692.
  • A.Ü. Tepe, Numerical investigation of a novel jet hole design for staggered array jet impingement cooling on a semicircular concave surface, Int. J. Therm. Sci. 162 (2021) 106792. https://doi.org/10.1016/j.ijthermalsci.2020.106792.
  • H.K. Pazarlıoğlu, R. Ekiciler, K. Arslan, Numerical Analysis of Effect of Impinging Jet on Cooling of Solar Air Heater with Longitudinal Fins, Heat Transf. Res. 52 (2021). https://doi.org/10.1615/heattransres.2021037251.
  • E. Ayan, S. Özgen, In-Flight Mixed Phase Ice Accretion Prediction on Finite Wings with TAICE-3D, (2017) 3–10. https://doi.org/10.13009/EUCASS2017-339.
  • O. Yirtici, K. Cengiz, S. Ozgen, I.H. Tuncer, Aerodynamic validation studies on the performance analysis of iced wind turbine blades, Comput. Fluids. 192 (2019). https://doi.org/10.1016/j.compfluid.2019.104271.
  • T. Hikmet Karakoc, M. Baris Ozerdem, M. Ziya Sogut, C.O. Colpan, O. Altuntas, E. Açıkkalp, In-Flight Icing Simulations on Airfoils, Sustain. Aviat. Energy Environ. Issues. (2016) 279–289. https://doi.org/10.1007/978-3-319-34181-1.
  • S. Özgen, M. CanIbek, Ice accretion simulation on multi-element airfoils using extended Messinger model, Heat Mass Transf. Und Stoffuebertragung. 45 (2009) 305–322. https://doi.org/10.1007/s00231-008-0430-4.
  • T.G. Myers, Extension to the Messinger model for aircraft icing, AIAA J. 39 (2001) 211–218. https://doi.org/10.2514/2.1312.
  • G. Mingione, V. Brandi, B. Esposito, Ice accretion prediction on multi-element airfoils, 35th Aerosp. Sci. Meet. Exhib. 35 (1997). https://doi.org/10.2514/6.1997-177.
  • T.G. Myers, J.P.F. Charpin, C.P. Thompson, Slowly accreting ice due to supercooled water impacting on acold surface, Phys. Fluids. 14 (2002) 240–256. https://doi.org/10.1063/1.1416186.
  • T. Cebeci, H.H. Chen, N. Alemdaroglu, Fortified LEWICE with viscous effects, 28th Aerosp. Sci. Meet. 1990. 28 (1990) 564–571. https://doi.org/10.2514/6.1990-754.
  • E. Ayan, S. Özgen, In-flight ice accretion simulation in mixed-phase conditions, Aeronaut. J. 122 (2018) 409–441. https://doi.org/10.1017/aer.2017.127.
  • L.M. Jiji, Heat convection: Second edition, Heat Convect. Second Ed. (2009) 1–543. https://doi.org/10.1007/978-3-642-02971-4.
  • N.İ.H. ALGBURI, H.K. PAZARLIOĞLU, K. ARSLAN, Effect of Pitch Ratio and Diagonal Length of Pin Fin of Heat Sink on Convective Heat Transfer for Turbulent Flow Condition, Eur. J. Sci. Technol. (2021) 643–652. https://doi.org/10.31590/ejosat.1009980.
  • Aerospaceweb.org | Ask Us - NACA Airfoil Series, (n.d.). http://www.aerospaceweb.org/question/airfoils/q0041.shtml (accessed November 28, 2021).
  • B. Yang, S. Chang, H. Wu, Y. Zhao, M. Leng, Experimental and numerical investigation of heat transfer in an array of impingement jets on a concave surface, Appl. Therm. Eng. 127 (2017) 473–483. https://doi.org/10.1016/j.applthermaleng.2017.07.190.
  • F.R. Menter, M. Kuntz, R. Langtry, Ten Years of Industrial Experience with the SST Turbulence Model, (2003).

Optimization of Parameters Affecting Anti-Icing Performance on Wing Leading Edge of Aircraft

Year 2022, , 19 - 27, 31.03.2022
https://doi.org/10.31590/ejosat.1062495

Abstract

In this article, one of the hazardous trouble in-flight situations called ice accumulation on wing leading edge of aircraft has been numerically investigated. While the target surface is kept constant temperature at Tw=263.15 K, the inlet temperature is taken constant at Tin=473.15 K and it enters to the system with m ̇=0.004 kg/s. The investigation starts with validation of numerical study utilizing airfoil type of NACA 0015 using constant piccolo tube dimensions, jet angle, distance among jets and distance between jet-to-target positions. The second and third stages are to analyze the anti-icing performance of changing positions of piccolo tube on X (4≤H/d≤8) and Y (-1.25≤L/d≤1.25) directions under different jet angles (30°≤≤150°). The fourth stage is to determine the optimum H/d, L/d, and ratios to increase anti-icing performance with maximum convective heat transfer and minimum pressure drop condition. The optimization study has been done using Response Surface Methodology (RSM). Finally, while the best anti-icing performance proposed design is achieved using° L/d=0.0, and H/d=4.0, the optimization results show that the L/d, and H/d values should be 55.45°, 0.0, and 4.0, respectively to achieve maximum heat transfer rate with minimum pressure drop value.

References

  • L. Yi, H. Hu, C. li, Y. Zhang, S. Yang, M. Pan, Experimental investigation on enhanced flow and heat transfer performance of micro-jet impingement vapor chamber for high power electronics, Int. J. Therm. Sci. 173 (2022). https://doi.org/10.1016/j.ijthermalsci.2021.107380.
  • F. Selimefendigil, H.F. Öztop, Nanojet impingement cooling of an isothermal surface in a partially porous medium under the impact of an inclined magnetic field, J. Therm. Anal. Calorim. 141 (2020) 1875–1888. https://doi.org/10.1007/s10973-019-08839-9.
  • R. Ekiciler, M.S.A. Çetinkaya, K. Arslan, Effect of shape of nanoparticle on heat transfer and entropy generation of nanofluid-jet impingement cooling, Int. J. Green Energy. 17 (2020) 555–567. https://doi.org/10.1080/15435075.2020.1739692.
  • A.Ü. Tepe, Numerical investigation of a novel jet hole design for staggered array jet impingement cooling on a semicircular concave surface, Int. J. Therm. Sci. 162 (2021) 106792. https://doi.org/10.1016/j.ijthermalsci.2020.106792.
  • H.K. Pazarlıoğlu, R. Ekiciler, K. Arslan, Numerical Analysis of Effect of Impinging Jet on Cooling of Solar Air Heater with Longitudinal Fins, Heat Transf. Res. 52 (2021). https://doi.org/10.1615/heattransres.2021037251.
  • E. Ayan, S. Özgen, In-Flight Mixed Phase Ice Accretion Prediction on Finite Wings with TAICE-3D, (2017) 3–10. https://doi.org/10.13009/EUCASS2017-339.
  • O. Yirtici, K. Cengiz, S. Ozgen, I.H. Tuncer, Aerodynamic validation studies on the performance analysis of iced wind turbine blades, Comput. Fluids. 192 (2019). https://doi.org/10.1016/j.compfluid.2019.104271.
  • T. Hikmet Karakoc, M. Baris Ozerdem, M. Ziya Sogut, C.O. Colpan, O. Altuntas, E. Açıkkalp, In-Flight Icing Simulations on Airfoils, Sustain. Aviat. Energy Environ. Issues. (2016) 279–289. https://doi.org/10.1007/978-3-319-34181-1.
  • S. Özgen, M. CanIbek, Ice accretion simulation on multi-element airfoils using extended Messinger model, Heat Mass Transf. Und Stoffuebertragung. 45 (2009) 305–322. https://doi.org/10.1007/s00231-008-0430-4.
  • T.G. Myers, Extension to the Messinger model for aircraft icing, AIAA J. 39 (2001) 211–218. https://doi.org/10.2514/2.1312.
  • G. Mingione, V. Brandi, B. Esposito, Ice accretion prediction on multi-element airfoils, 35th Aerosp. Sci. Meet. Exhib. 35 (1997). https://doi.org/10.2514/6.1997-177.
  • T.G. Myers, J.P.F. Charpin, C.P. Thompson, Slowly accreting ice due to supercooled water impacting on acold surface, Phys. Fluids. 14 (2002) 240–256. https://doi.org/10.1063/1.1416186.
  • T. Cebeci, H.H. Chen, N. Alemdaroglu, Fortified LEWICE with viscous effects, 28th Aerosp. Sci. Meet. 1990. 28 (1990) 564–571. https://doi.org/10.2514/6.1990-754.
  • E. Ayan, S. Özgen, In-flight ice accretion simulation in mixed-phase conditions, Aeronaut. J. 122 (2018) 409–441. https://doi.org/10.1017/aer.2017.127.
  • L.M. Jiji, Heat convection: Second edition, Heat Convect. Second Ed. (2009) 1–543. https://doi.org/10.1007/978-3-642-02971-4.
  • N.İ.H. ALGBURI, H.K. PAZARLIOĞLU, K. ARSLAN, Effect of Pitch Ratio and Diagonal Length of Pin Fin of Heat Sink on Convective Heat Transfer for Turbulent Flow Condition, Eur. J. Sci. Technol. (2021) 643–652. https://doi.org/10.31590/ejosat.1009980.
  • Aerospaceweb.org | Ask Us - NACA Airfoil Series, (n.d.). http://www.aerospaceweb.org/question/airfoils/q0041.shtml (accessed November 28, 2021).
  • B. Yang, S. Chang, H. Wu, Y. Zhao, M. Leng, Experimental and numerical investigation of heat transfer in an array of impingement jets on a concave surface, Appl. Therm. Eng. 127 (2017) 473–483. https://doi.org/10.1016/j.applthermaleng.2017.07.190.
  • F.R. Menter, M. Kuntz, R. Langtry, Ten Years of Industrial Experience with the SST Turbulence Model, (2003).
There are 19 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Hayati Kadir Pazarlıoğlu 0000-0002-9365-9431

Ahmet Ümit Tepe 0000-0001-7626-6348

Kamil Arslan 0000-0002-1216-6812

Publication Date March 31, 2022
Published in Issue Year 2022

Cite

APA Pazarlıoğlu, H. K., Tepe, A. Ü., & Arslan, K. (2022). Optimization of Parameters Affecting Anti-Icing Performance on Wing Leading Edge of Aircraft. Avrupa Bilim Ve Teknoloji Dergisi(34), 19-27. https://doi.org/10.31590/ejosat.1062495