Research Article
BibTex RIS Cite

Yüksek saponin içerikli Saponaria officinalis L. ile Sentezlenen Bakır Nanopartiküllerin Karakterizasyonu ve Antibakteriyel Aktivitesi

Year 2022, , 341 - 348, 07.05.2022
https://doi.org/10.31590/ejosat.1063095

Abstract

Metalik nanoparçacıklar genellikle sentezlendikleri metal iyonlarından daha kararlı ve aktiftir ve hem nanoparçacıklar hem de metal iyonları antimikrobiyal özelliklere sahiptir. Antimikrobiyal etkileri genellikle mantarlarla birlikte gram pozitif, gram negatif bakterileri kapsar. Spesifik temel sentetik yolları hedefleyen antibiyotiklerin aksine metalik nanopartiküllerin spesifik etki mekkanizmaları yoktur. Bu nedenle antibakteriyel özelliklere sahip NP'ler, çoklu ilaç direnci gösteren inatçı bakteriyel enfeksiyonlara karşı potansiyel ajanlar olarak öngörülmektedir.
Bu çalışmada yeşil yoldan bakır nanoparçacık (CuNP) sentezi, yapısal karakterizasyonu ve antibakteriyel özelliklerinin değerlendirilmesi rapor edilmiştir. Seçilen indirgeyici madde kaynağı, saponin içeriği yüksek olduğu bilinen çöğen (Saponaria officinalis L.) kök ekstreleridir. Bakır ve S. officinalis kök ekstraktlarından yeşil nanopartiküller üretmekteki temel amaç, hem CuNP'lerin hem de sabun otundan elde edilen biyoaktif fitokimyasalların antibakteriyel etkilerini birleştirmektir.
Bu amaçal sentezlenen Yeşil-CuNP'lerin yapısal karakterizasyonu, taramalı elektron mikroskobu (SEM), UV-Vis spektroskopisi (UV-Vis), fourier dönüşümlü kızılötesi spektrofotometre (FTIR) ve X-ışını kırınımı (XRD) analizi yoluyla gerçekleştirilmiştir. Muhtemelen saponinler ve diğer aktif fitokimyasallarla kaplanmış Yeşil-CuNP'lerin, iki yaygın bakteriye (Eschericia coli ve Staphylococus aeurous) karşı antimikrobiyal aktiviteleri test edilmiştir.
Üretilen NP'nin büyük kısmının, ortalama çapı 17 nm olan saf nanokristal yapılar olduğu (XRD verisi) gösterilmiş, FTIR analiz verilerinden NP’lerin, hem CuNP yapıda olduğu hem de aromatik hidrokarbon yapıları (muhtemelen saponinler) ile işlevselleştirildiği doğrulanmıştır. Antimikrobiyal özelliklerin değerlendirilmesinde ise NP’lerin yüksek dozlarda kullanıldığında E. coli ve S. aeurous'a karşı zayıf ila orta derecede ancak istatistiki olarak önemli antimikrobiyal etki gösterdiği görülmüştür.
S. officinalis ile sentezlenen Yeşil-CuNP'lerin antimikrobiyal aktivitesinin gerçek mekaniğini ortaya çıkarmak için daha fazla teşhis ve deney yapılabilir.

Supporting Institution

Bartın Üniversitesi

References

  • Abdulazeem1, L., Hussien2, M. D., Al-Gburi3, N. M., & Jassani4, M. J. Al. (n.d.). A Minireview: Nanomaterial as Antimicrobial Agents. European Journal of Molecular & Clinical Medicine (Vol. 7).
  • Aderibigbe, B. A. (2017). Metal-based nanoparticles for the treatment of infectious diseases. Molecules, 22(8). https://doi.org/10.3390/molecules22081370
  • Aladpoosh, R., & Montazer, M. (2015). The role of cellulosic chains of cotton in biosynthesis of ZnO nanorods producing multifunctional properties: Mechanism, characterizations and features. Carbohydrate Polymers, 126, 122–129. https://doi.org/10.1016/j.carbpol.2015.03.036
  • Allaf, R. M., & Hope-Weeks, L. J. (2014). Synthesis of ZnO-CuO nanocomposite Aerogels by the sol-gel route. Journal of Nanomaterials, 2014. https://doi.org/10.1155/2014/491817
  • Ananda Murthy, H. C., Abebe, B., C H, P., & Shantaveerayya, K. (2018). A Review on Green Synthesis and Applications of Cu and CuO Nanoparticles. Material Science Research India, 15(3), 279–295. https://doi.org/10.13005/msri/150311
  • Beyth, N., Houri-Haddad, Y., Domb, A., Khan, W., & Hazan, R. (2015). Alternative antimicrobial approach: Nano-antimicrobial materials. Evidence-Based Complementary and Alternative Medicine. Hindawi Publishing Corporation. https://doi.org/10.1155/2015/246012
  • Brandt, A. L., Castillo, A., Harris, K. B., Keeton, J. T., Hardin, M. D., & Taylor, T. M. (2010). Inhibition of Listeria monocytogenes by Food Antimicrobials Applied Singly and in Combination. Journal of Food Science, 75(9), M557–M563. https://doi.org/10.1111/j.1750-3841.2010.01843.x
  • Chandra, S., Rawat, D. S., & Bhatt, A. (2021). Phytochemistry and pharmacological activities of Saponaria officinalis l.: A review. Notulae Scientia Biologicae, 13(1), 1–13. https://doi.org/10.15835/nsb13110809
  • Chinnappan, S., Kandasamy, S., Arumugam, S., Seralathan, K. K., Thangaswamy, S., & Muthusamy, G. (2018). Biomimetic synthesis of silver nanoparticles using flower extract of Bauhinia purpurea and its antibacterial activity against clinical pathogens. Environmental Science and Pollution Research, 25(1), 963–969. https://doi.org/10.1007/s11356-017-0841-1
  • Gholami, M., Azarbani, F., Hadi, F., & Murthy, H. C. A. (2021a). Eco-friendly synthesis of copper nanoparticles using Mentha pulegium leaf extract: characterisation, antibacterial and cytotoxic activities. Materials Technology. https://doi.org/10.1080/10667857.2021.1959214
  • Gholami, M., Azarbani, F., Hadi, F., & Murthy, H. C. A. (2021b). Eco-friendly synthesis of copper nanoparticles using Mentha pulegium leaf extract: characterisation, antibacterial and cytotoxic activities. Materials Technology, 00(00), 1–9. https://doi.org/10.1080/10667857.2021.1959214
  • Gudikandula, K., & Charya Maringanti, S. (2016). Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial properties. Journal of Experimental Nanoscience, 11(9), 714–721. https://doi.org/10.1080/17458080.2016.1139196
  • Hussain, I., Singh, N. B., Singh, A., Singh, H., & Singh, S. C. (2016, April 1). Green synthesis of nanoparticles and its potential application. Biotechnology Letters. Springer Netherlands. https://doi.org/10.1007/s10529-015-2026-7
  • Iram, S., Khan, J. A., Aman, N., Nadhman, A., Zulfiqar, Z., & Yameen, M. A. (2016). Enhancing the anti-enterococci activity of different antibiotics by combining with metal oxide nanoparticles. Jundishapur Journal of Microbiology, 9(3). https://doi.org/10.5812/jjm.31302
  • Jayarambabu, N., Akshaykranth, A., Venkatappa Rao, T., Venkateswara Rao, K., & Rakesh Kumar, R. (2020). Green synthesis of Cu nanoparticles using Curcuma longa extract and their application in antimicrobial activity. Materials Letters, 259. https://doi.org/10.1016/j.matlet.2019.126813
  • Jurado Gonzalez, P., & Sörensen, P. M. (2020). Characterization of saponin foam from Saponaria officinalis for food applications. Food Hydrocolloids, 101(August 2019). https://doi.org/10.1016/j.foodhyd.2019.105541
  • Kaur, P., Thakur, R., & Chaudhury, A. (2016, January 2). Biogenesis of copper nanoparticles using peel extract of Punica granatum and their antimicrobial activity against opportunistic pathogens. Green Chemistry Letters and Reviews. Taylor and Francis Ltd. https://doi.org/10.1080/17518253.2016.1141238
  • Lee, N. Y., Ko, W. C., & Hsueh, P. R. (2019). Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Frontiers in Pharmacology, 10(October), 1–10. https://doi.org/10.3389/fphar.2019.01153
  • Lv, Q., Zhang, B., Xing, X., Zhao, Y., Cai, R., Wang, W., & Gu, Q. (2018a). Biosynthesis of copper nanoparticles using Shewanella loihica PV-4 with antibacterial activity: Novel approach and mechanisms investigation. Journal of Hazardous Materials, 347, 141–149. https://doi.org/10.1016/j.jhazmat.2017.12.070
  • Lv, Q., Zhang, B., Xing, X., Zhao, Y., Cai, R., Wang, W., & Gu, Q. (2018b). Biosynthesis of copper nanoparticles using Shewanella loihica PV-4 with antibacterial activity: Novel approach and mechanisms investigation. Journal of Hazardous Materials, 347, 141–149. https://doi.org/10.1016/j.jhazmat.2017.12.070
  • Manikandan, V., Velmurugan, P., Park, J. H., Chang, W. S., Park, Y. J., Jayanthi, P., … Oh, B. T. (2017). Green synthesis of silver oxide nanoparticles and its antibacterial activity against dental pathogens. 3 Biotech, 7(1). https://doi.org/10.1007/s13205-017-0670-4
  • Mott, D., Galkowski, J., Wang, L., Luo, J., & Zhong, C. J. (2007). Synthesis of size-controlled and shaped copper nanoparticles. Langmuir, 23(10), 5740–5745. https://doi.org/10.1021/la0635092
  • Murthy, H. C. A., Desalegn, T., Kassa, M., Abebe, B., & Assefa, T. (2020a). Synthesis of Green Copper Nanoparticles Using Medicinal Plant Hagenia abyssinica (Brace) JF. Gmel. Leaf Extract: Antimicrobial Properties. Journal of Nanomaterials, 2020. https://doi.org/10.1155/2020/3924081
  • Murthy, H. C. A., Desalegn, T., Kassa, M., Abebe, B., & Assefa, T. (2020b). Synthesis of Green Copper Nanoparticles Using Medicinal Plant Hagenia abyssinica (Brace) JF. Gmel. Leaf Extract: Antimicrobial Properties. Journal of Nanomaterials, 2020. https://doi.org/10.1155/2020/3924081
  • Nasrollahzadeh, M., Sajadi, S. M., & Hatamifard, A. (2016). Waste chicken eggshell as a natural valuable resource and environmentally benign support for biosynthesis of catalytically active Cu/eggshell, Fe3O4/eggshell and Cu/Fe3O4/eggshell nanocomposites. Applied Catalysis B: Environmental, 191, 209–227. https://doi.org/10.1016/j.apcatb.2016.02.042
  • Olajire, A. A., Ifediora, N. F., Bello, M. D., & Benson, N. U. (2018). Green Synthesis of Copper Nanoparticles Using Alchornea laxiflora Leaf Extract and Their Catalytic Application for Oxidative Desulphurization of Model Oil. Iranian Journal of Science and Technology, Transaction A: Science, 42(4), 1935–1946. https://doi.org/10.1007/s40995-017-0404-9
  • Raffi, M., Mehrwan, S., Bhatti, T. M., Akhter, J. I., Hameed, A., Yawar, W., & Ul Hasan, M. M. (2010). Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Annals of Microbiology, 60(1), 75–80. https://doi.org/10.1007/s13213-010-0015-6
  • Raghunath, A., & Perumal, E. (2017). Metal oxide nanoparticles as antimicrobial agents: a promise for the future. International Journal of Antimicrobial Agents, 49(2), 137–152. https://doi.org/10.1016/j.ijantimicag.2016.11.011
  • Rajaganesh, R., Murugan, K., Panneerselvam, C., Jayashanthini, S., Aziz, A. T., Roni, M., … Benelli, G. (2016). Fern-synthesized silver nanocrystals: Towards a new class of mosquito oviposition deterrents? Research in Veterinary Science, 109, 40–51. https://doi.org/10.1016/j.rvsc.2016.09.012
  • Saranyaadevi, K., Subha, V., Ernest Ravindran, R. S., & Renganathan, S. (2014). Synthesis and characterization of copper nanoparticle using capparis zeylanicaleaf extract. International Journal of ChemTech Research (Vol. 6).
  • Sathyanarayanan, M. B., Balachandranath, R., Genji Srinivasulu, Y., Kannaiyan, S. K., & Subbiahdoss, G. (2013). The Effect of Gold and Iron-Oxide Nanoparticles on Biofilm-Forming Pathogens. ISRN Microbiology, 2013, 1–5. https://doi.org/10.1155/2013/272086
  • Sengul, M., Ercisli, S., Yildiz, H., Gungor, N., Kavaz, A., & Çetina, B. (2011). Antioxidant, antimicrobial activity and total phenolic content within the aerial parts of artemisia absinthum, artemisia santonicum and saponaria officinalis. Iranian Journal of Pharmaceutical Research, 10(1), 49–56. https://doi.org/10.22037/ijpr.2010.877
  • Shah, M., Fawcett, D., Sharma, S., Tripathy, S. K., & Poinern, G. E. J. (2015). Green synthesis of metallic nanoparticles via biological entities. Materials. MDPI AG. https://doi.org/10.3390/ma8115377
  • Shashanka, R. (2021). Investigation of optical and thermal properties of CuO and ZnO nanoparticles prepared by Crocus Sativus (Saffron) flower extract. Journal of the Iranian Chemical Society, 18(2), 415–427. https://doi.org/10.1007/s13738-020-02037-3
  • Taş, R., Köroğlu, E. & Celebioglu, H. U. (2021). Green Synthesis of Nickel Nanoparticles Using Peumus Boldus Koch. Extract and Antibacterial Activity. International Journal of Innovative Engineering Applications, 5 (2), 152-155. DOI: 10.46460/ijiea.929625
  • Tenover, F. C. (2006). Mechanisms of Antimicrobial Resistance in Bacteria. American Journal of Medicine, 119(6 SUPPL. 1). https://doi.org/10.1016/j.amjmed.2006.03.011
  • Tovar-Corona, A., Lobo-Sánchez, M. A., Herrera-Perez, J. L., Zanella, R., Rodriguez-Mora, J. I., & Vázquez-Cuchillo, O. (2018). Green synthesis of copper (0) nanoparticles with cyanidine-O-3-glucoside and its strong antimicrobial activity. Materials Letters, 211, 266–269. https://doi.org/10.1016/j.matlet.2017.10.020
  • Valodkar, M., Rathore, P. S., Jadeja, R. N., Thounaojam, M., Devkar, R. V., & Thakore, S. (2012). Cytotoxicity evaluation and antimicrobial studies of starch capped water soluble copper nanoparticles. Journal of Hazardous Materials, 201–202, 244–249. https://doi.org/10.1016/j.jhazmat.2011.11.077
  • Velmurugan, P., Anbalagan, K., Manosathyadevan, M., Lee, K. J., Cho, M., Lee, S. M., … Oh, B. T. (2014). Green synthesis of silver and gold nanoparticles using Zingiber officinale root extract and antibacterial activity of silver nanoparticles against food pathogens. Bioprocess and Biosystems Engineering, 37(10), 1935–1943. https://doi.org/10.1007/s00449-014-1169-6
  • Virkutyte, J., & Varma, R. S. (2011). Green synthesis of metal nanoparticles: Biodegradable polymers and enzymes in stabilization and surface functionalization. Chemical Science. https://doi.org/10.1039/c0sc00338g
  • Wang, L., Hu, C., & Shao, L. (2017, February 14). The antimicrobial activity of nanoparticles: Present situation and prospects for the future. International Journal of Nanomedicine. Dove Medical Press Ltd. https://doi.org/10.2147/IJN.S121956

Characterization and Antibacterial Activity of Green Copper Nanoparticles Synthesized by Saponaria officinalis L., a plant with high saponin content

Year 2022, , 341 - 348, 07.05.2022
https://doi.org/10.31590/ejosat.1063095

Abstract

Metallic nanoparticles are generally more stable and active than the metal ions from which they were synthesized where both nanoparticles and metal ions usually have antimicrobial properties. Their antimicrobial effect generally covers gram-positive, gram-negative bacteria along with fungi. And unlike antibiotics that target specific essential synthetic pathways in the cell antimicrobial actions of metallic nanoparticles are nonspecific. Due to this fact NPs with antibacterial properties are foresen as potential agents against stubborn bacterial infections that show multidrug resistance.
In this work we report copper nanoparticle (CuNP) synthesis through green route, structural characterization and evaluation of its’ antibacterial properties. Source of reducing agent selected was soapwort (Saponaria officinalis L.) root extracts that are known to be high in saponin content. Main aim of generating green nanoparticles from copper and S. officinalis root extracts was to combine antibacterial effects of both CuNPs and bioactive phytochemicals from soapwort.
Structural characterisation of the Green-CuNPs were performed through scanning electron microscopy (SEM), UV-Visible spectroscopy (UV-Vis), fourier conversion infrared spectrophotometer (FTIR) and X-ray diffraction (XRD) analysis. Green-CuNPs coated (perhaps) with saponins and other active phytochemicals were tested for their antimicrobial activities against two common bacteria (Eschericia coli and Staphylococus aeurous).
The bulk of the genrated NP were shown to be pure nanocrystalline structures (XRD analysis) with average diameter of 17 nm. FTIR analysis data confirmed both CuNP formation and functionalization with aromatic hydrocarbon structures (possibly saponins). In the evaluation of antimicrobial properties, it was observed that NPs had weak to moderate but statistically significant antimicrobial effects against E. coli and S. aeurous when used at high doses.
Further diagnostics and experimentations may be done to reveal the true mechanistics of antimicrobial activity of Green-CuNPs synthessised with S. officinalis.

References

  • Abdulazeem1, L., Hussien2, M. D., Al-Gburi3, N. M., & Jassani4, M. J. Al. (n.d.). A Minireview: Nanomaterial as Antimicrobial Agents. European Journal of Molecular & Clinical Medicine (Vol. 7).
  • Aderibigbe, B. A. (2017). Metal-based nanoparticles for the treatment of infectious diseases. Molecules, 22(8). https://doi.org/10.3390/molecules22081370
  • Aladpoosh, R., & Montazer, M. (2015). The role of cellulosic chains of cotton in biosynthesis of ZnO nanorods producing multifunctional properties: Mechanism, characterizations and features. Carbohydrate Polymers, 126, 122–129. https://doi.org/10.1016/j.carbpol.2015.03.036
  • Allaf, R. M., & Hope-Weeks, L. J. (2014). Synthesis of ZnO-CuO nanocomposite Aerogels by the sol-gel route. Journal of Nanomaterials, 2014. https://doi.org/10.1155/2014/491817
  • Ananda Murthy, H. C., Abebe, B., C H, P., & Shantaveerayya, K. (2018). A Review on Green Synthesis and Applications of Cu and CuO Nanoparticles. Material Science Research India, 15(3), 279–295. https://doi.org/10.13005/msri/150311
  • Beyth, N., Houri-Haddad, Y., Domb, A., Khan, W., & Hazan, R. (2015). Alternative antimicrobial approach: Nano-antimicrobial materials. Evidence-Based Complementary and Alternative Medicine. Hindawi Publishing Corporation. https://doi.org/10.1155/2015/246012
  • Brandt, A. L., Castillo, A., Harris, K. B., Keeton, J. T., Hardin, M. D., & Taylor, T. M. (2010). Inhibition of Listeria monocytogenes by Food Antimicrobials Applied Singly and in Combination. Journal of Food Science, 75(9), M557–M563. https://doi.org/10.1111/j.1750-3841.2010.01843.x
  • Chandra, S., Rawat, D. S., & Bhatt, A. (2021). Phytochemistry and pharmacological activities of Saponaria officinalis l.: A review. Notulae Scientia Biologicae, 13(1), 1–13. https://doi.org/10.15835/nsb13110809
  • Chinnappan, S., Kandasamy, S., Arumugam, S., Seralathan, K. K., Thangaswamy, S., & Muthusamy, G. (2018). Biomimetic synthesis of silver nanoparticles using flower extract of Bauhinia purpurea and its antibacterial activity against clinical pathogens. Environmental Science and Pollution Research, 25(1), 963–969. https://doi.org/10.1007/s11356-017-0841-1
  • Gholami, M., Azarbani, F., Hadi, F., & Murthy, H. C. A. (2021a). Eco-friendly synthesis of copper nanoparticles using Mentha pulegium leaf extract: characterisation, antibacterial and cytotoxic activities. Materials Technology. https://doi.org/10.1080/10667857.2021.1959214
  • Gholami, M., Azarbani, F., Hadi, F., & Murthy, H. C. A. (2021b). Eco-friendly synthesis of copper nanoparticles using Mentha pulegium leaf extract: characterisation, antibacterial and cytotoxic activities. Materials Technology, 00(00), 1–9. https://doi.org/10.1080/10667857.2021.1959214
  • Gudikandula, K., & Charya Maringanti, S. (2016). Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial properties. Journal of Experimental Nanoscience, 11(9), 714–721. https://doi.org/10.1080/17458080.2016.1139196
  • Hussain, I., Singh, N. B., Singh, A., Singh, H., & Singh, S. C. (2016, April 1). Green synthesis of nanoparticles and its potential application. Biotechnology Letters. Springer Netherlands. https://doi.org/10.1007/s10529-015-2026-7
  • Iram, S., Khan, J. A., Aman, N., Nadhman, A., Zulfiqar, Z., & Yameen, M. A. (2016). Enhancing the anti-enterococci activity of different antibiotics by combining with metal oxide nanoparticles. Jundishapur Journal of Microbiology, 9(3). https://doi.org/10.5812/jjm.31302
  • Jayarambabu, N., Akshaykranth, A., Venkatappa Rao, T., Venkateswara Rao, K., & Rakesh Kumar, R. (2020). Green synthesis of Cu nanoparticles using Curcuma longa extract and their application in antimicrobial activity. Materials Letters, 259. https://doi.org/10.1016/j.matlet.2019.126813
  • Jurado Gonzalez, P., & Sörensen, P. M. (2020). Characterization of saponin foam from Saponaria officinalis for food applications. Food Hydrocolloids, 101(August 2019). https://doi.org/10.1016/j.foodhyd.2019.105541
  • Kaur, P., Thakur, R., & Chaudhury, A. (2016, January 2). Biogenesis of copper nanoparticles using peel extract of Punica granatum and their antimicrobial activity against opportunistic pathogens. Green Chemistry Letters and Reviews. Taylor and Francis Ltd. https://doi.org/10.1080/17518253.2016.1141238
  • Lee, N. Y., Ko, W. C., & Hsueh, P. R. (2019). Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Frontiers in Pharmacology, 10(October), 1–10. https://doi.org/10.3389/fphar.2019.01153
  • Lv, Q., Zhang, B., Xing, X., Zhao, Y., Cai, R., Wang, W., & Gu, Q. (2018a). Biosynthesis of copper nanoparticles using Shewanella loihica PV-4 with antibacterial activity: Novel approach and mechanisms investigation. Journal of Hazardous Materials, 347, 141–149. https://doi.org/10.1016/j.jhazmat.2017.12.070
  • Lv, Q., Zhang, B., Xing, X., Zhao, Y., Cai, R., Wang, W., & Gu, Q. (2018b). Biosynthesis of copper nanoparticles using Shewanella loihica PV-4 with antibacterial activity: Novel approach and mechanisms investigation. Journal of Hazardous Materials, 347, 141–149. https://doi.org/10.1016/j.jhazmat.2017.12.070
  • Manikandan, V., Velmurugan, P., Park, J. H., Chang, W. S., Park, Y. J., Jayanthi, P., … Oh, B. T. (2017). Green synthesis of silver oxide nanoparticles and its antibacterial activity against dental pathogens. 3 Biotech, 7(1). https://doi.org/10.1007/s13205-017-0670-4
  • Mott, D., Galkowski, J., Wang, L., Luo, J., & Zhong, C. J. (2007). Synthesis of size-controlled and shaped copper nanoparticles. Langmuir, 23(10), 5740–5745. https://doi.org/10.1021/la0635092
  • Murthy, H. C. A., Desalegn, T., Kassa, M., Abebe, B., & Assefa, T. (2020a). Synthesis of Green Copper Nanoparticles Using Medicinal Plant Hagenia abyssinica (Brace) JF. Gmel. Leaf Extract: Antimicrobial Properties. Journal of Nanomaterials, 2020. https://doi.org/10.1155/2020/3924081
  • Murthy, H. C. A., Desalegn, T., Kassa, M., Abebe, B., & Assefa, T. (2020b). Synthesis of Green Copper Nanoparticles Using Medicinal Plant Hagenia abyssinica (Brace) JF. Gmel. Leaf Extract: Antimicrobial Properties. Journal of Nanomaterials, 2020. https://doi.org/10.1155/2020/3924081
  • Nasrollahzadeh, M., Sajadi, S. M., & Hatamifard, A. (2016). Waste chicken eggshell as a natural valuable resource and environmentally benign support for biosynthesis of catalytically active Cu/eggshell, Fe3O4/eggshell and Cu/Fe3O4/eggshell nanocomposites. Applied Catalysis B: Environmental, 191, 209–227. https://doi.org/10.1016/j.apcatb.2016.02.042
  • Olajire, A. A., Ifediora, N. F., Bello, M. D., & Benson, N. U. (2018). Green Synthesis of Copper Nanoparticles Using Alchornea laxiflora Leaf Extract and Their Catalytic Application for Oxidative Desulphurization of Model Oil. Iranian Journal of Science and Technology, Transaction A: Science, 42(4), 1935–1946. https://doi.org/10.1007/s40995-017-0404-9
  • Raffi, M., Mehrwan, S., Bhatti, T. M., Akhter, J. I., Hameed, A., Yawar, W., & Ul Hasan, M. M. (2010). Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Annals of Microbiology, 60(1), 75–80. https://doi.org/10.1007/s13213-010-0015-6
  • Raghunath, A., & Perumal, E. (2017). Metal oxide nanoparticles as antimicrobial agents: a promise for the future. International Journal of Antimicrobial Agents, 49(2), 137–152. https://doi.org/10.1016/j.ijantimicag.2016.11.011
  • Rajaganesh, R., Murugan, K., Panneerselvam, C., Jayashanthini, S., Aziz, A. T., Roni, M., … Benelli, G. (2016). Fern-synthesized silver nanocrystals: Towards a new class of mosquito oviposition deterrents? Research in Veterinary Science, 109, 40–51. https://doi.org/10.1016/j.rvsc.2016.09.012
  • Saranyaadevi, K., Subha, V., Ernest Ravindran, R. S., & Renganathan, S. (2014). Synthesis and characterization of copper nanoparticle using capparis zeylanicaleaf extract. International Journal of ChemTech Research (Vol. 6).
  • Sathyanarayanan, M. B., Balachandranath, R., Genji Srinivasulu, Y., Kannaiyan, S. K., & Subbiahdoss, G. (2013). The Effect of Gold and Iron-Oxide Nanoparticles on Biofilm-Forming Pathogens. ISRN Microbiology, 2013, 1–5. https://doi.org/10.1155/2013/272086
  • Sengul, M., Ercisli, S., Yildiz, H., Gungor, N., Kavaz, A., & Çetina, B. (2011). Antioxidant, antimicrobial activity and total phenolic content within the aerial parts of artemisia absinthum, artemisia santonicum and saponaria officinalis. Iranian Journal of Pharmaceutical Research, 10(1), 49–56. https://doi.org/10.22037/ijpr.2010.877
  • Shah, M., Fawcett, D., Sharma, S., Tripathy, S. K., & Poinern, G. E. J. (2015). Green synthesis of metallic nanoparticles via biological entities. Materials. MDPI AG. https://doi.org/10.3390/ma8115377
  • Shashanka, R. (2021). Investigation of optical and thermal properties of CuO and ZnO nanoparticles prepared by Crocus Sativus (Saffron) flower extract. Journal of the Iranian Chemical Society, 18(2), 415–427. https://doi.org/10.1007/s13738-020-02037-3
  • Taş, R., Köroğlu, E. & Celebioglu, H. U. (2021). Green Synthesis of Nickel Nanoparticles Using Peumus Boldus Koch. Extract and Antibacterial Activity. International Journal of Innovative Engineering Applications, 5 (2), 152-155. DOI: 10.46460/ijiea.929625
  • Tenover, F. C. (2006). Mechanisms of Antimicrobial Resistance in Bacteria. American Journal of Medicine, 119(6 SUPPL. 1). https://doi.org/10.1016/j.amjmed.2006.03.011
  • Tovar-Corona, A., Lobo-Sánchez, M. A., Herrera-Perez, J. L., Zanella, R., Rodriguez-Mora, J. I., & Vázquez-Cuchillo, O. (2018). Green synthesis of copper (0) nanoparticles with cyanidine-O-3-glucoside and its strong antimicrobial activity. Materials Letters, 211, 266–269. https://doi.org/10.1016/j.matlet.2017.10.020
  • Valodkar, M., Rathore, P. S., Jadeja, R. N., Thounaojam, M., Devkar, R. V., & Thakore, S. (2012). Cytotoxicity evaluation and antimicrobial studies of starch capped water soluble copper nanoparticles. Journal of Hazardous Materials, 201–202, 244–249. https://doi.org/10.1016/j.jhazmat.2011.11.077
  • Velmurugan, P., Anbalagan, K., Manosathyadevan, M., Lee, K. J., Cho, M., Lee, S. M., … Oh, B. T. (2014). Green synthesis of silver and gold nanoparticles using Zingiber officinale root extract and antibacterial activity of silver nanoparticles against food pathogens. Bioprocess and Biosystems Engineering, 37(10), 1935–1943. https://doi.org/10.1007/s00449-014-1169-6
  • Virkutyte, J., & Varma, R. S. (2011). Green synthesis of metal nanoparticles: Biodegradable polymers and enzymes in stabilization and surface functionalization. Chemical Science. https://doi.org/10.1039/c0sc00338g
  • Wang, L., Hu, C., & Shao, L. (2017, February 14). The antimicrobial activity of nanoparticles: Present situation and prospects for the future. International Journal of Nanomedicine. Dove Medical Press Ltd. https://doi.org/10.2147/IJN.S121956
There are 41 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Hamdi Kamçı 0000-0001-9255-2125

Recep Taş 0000-0002-3743-7770

Hasan Ufuk Celebioglu 0000-0001-7207-2730

Publication Date May 7, 2022
Published in Issue Year 2022

Cite

APA Kamçı, H., Taş, R., & Celebioglu, H. U. (2022). Characterization and Antibacterial Activity of Green Copper Nanoparticles Synthesized by Saponaria officinalis L., a plant with high saponin content. Avrupa Bilim Ve Teknoloji Dergisi(35), 341-348. https://doi.org/10.31590/ejosat.1063095