Research Article
BibTex RIS Cite

Kemik Rejenerasyonu için Farklı Gözenek Oranlarındaki Kafes Tabanlı Gözenekli Yapının Geçirgenlik Performansının Değerlendirilmesi

Year 2022, , 75 - 79, 31.03.2022
https://doi.org/10.31590/ejosat.1069194

Abstract

Günümüzde, travmalar, kemik tümörleri veya osteonekroz gibi çeşitli nedenler ve artan yaşlı nüfusa da bağlı olarak kemik kayıplarına sıkça rastlanılmaktadır. Kemik kayıplarının giderilmesi ile hastanın kemik fonksiyonlarını devam ettirmesi, estetik görünümün korunması gibi hasta yaşam kalitesi korunmaya çalışılmaktadır. Gelişen teknolojiyle birlikte, kemik kayıplarının yerini alması için gözenekli yapıya sahip protezlerin tasarlanması ve üretilmesi oldukça yaygındır. Protezler, hasta için kullanıma sunulmadan önce birçok sayısal ve deneysel analizlere tabi tutularak biyomekanik olarak uygunluğu araştırılmaktadır. Bu çalışmada kiriş tabanlı kafes yapılardan bir mimari belirlenerek bu geometriye sahip farklı gözeneklilik oranlarındaki iskelelerin kemik rejenerasyonu için uygunluğunun araştırılması amaçlanmıştır. Bu doğrultuda, iskele modellerinin kemik benzeri davranışlarını belirlemek için akış analizleri sayısal olarak gerçekleştirilmiştir. Hesaplamalı Akışkanlar Dinamiği yöntemi ile yapılan akış analizleri sonucunda geçirgenlik değerleri hesaplanmış olup, yapı içerisinden geçen akış çizgileri ve yüzeylerde oluşan duvar kayma gerilmeleri kaydedilmiştir. Tasarlanan modellerin geçirgenlik performanslarına bakıldığında, tüm modeller trabeküler kemik geçirgenliğinin alt sınırının üstünde olduğu görülmektedir. Ayrıca, duvar kayma gerilmesi bakımından %50 ve %60 gözeneklilikteki iskelelerde kemik hücre gelişimi için olumsuz olabilecek gerilme değerleri meydana geldiği görülmektedir.

References

  • Ali, D., Ozalp, M., Blanquer, S. B., & Onel, S. (2020). Permeability and fluid flow-induced wall shear stress in bone scaffolds with TPMS and lattice architectures: A CFD analysis. European Journal of Mechanics-B/Fluids, 79, 376-385.
  • Arjunan, A., Demetriou, M., Baroutaji, A., & Wang, C. (2020). Mechanical performance of highly permeable laser melted Ti6Al4V bone scaffolds. journal of the mechanical behavior of biomedical materials, 102, 103517.
  • Campoli, G., Borleffs, M. S., Yavari, S. A., Wauthle, R., Weinans, H., & Zadpoor, A. A. (2013). Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing. Materials & Design, 49, 957-965.
  • Dimitriou, R., Jones, E., McGonagle, D., & Giannoudis, P. V. (2011). Bone regeneration: current concepts and future directions. BMC medicine, 9(1), 1-10.
  • Gómez, S., Vlad, M. D., López, J., & Fernández, E. (2016). Design and properties of 3D scaffolds for bone tissue engineering. Acta biomaterialia, 42, 341-350.
  • Grimm, M. J., & Williams, J. L. (1997). Measurements of permeability in human calcaneal trabecular bone. Journal of Biomechanics, 30(7), 743-745.
  • McCoy, R. J., Jungreuthmayer, C., & O'Brien, F. J. (2012). Influence of flow rate and scaffold pore size on cell behavior during mechanical stimulation in a flow perfusion bioreactor. Biotechnology and bioengineering, 109(6), 1583-1594.
  • Melchels, F. P., Tonnarelli, B., Olivares, A. L., Martin, I., Lacroix, D., Feijen, J., ... & Grijpma, D. W. (2011). The influence of the scaffold design on the distribution of adhering cells after perfusion cell seeding. Biomaterials, 32(11), 2878-2884.
  • Nelms, L., & Palmer, W. J. (2019). Tissue engineering in mandibular reconstruction: Osteogenesis-inducing scaffolds. Plastic and Aesthetic Research, 6, 21.
  • Olivares, A. L., Marsal, È., Planell, J. A., & Lacroix, D. (2009). Finite element study of scaffold architecture design and culture conditions for tissue engineering. Biomaterials, 30(30), 6142-6149.
  • Sinha, R., Le Gac, S., Verdonschot, N., van den Berg, A., Koopman, B., & Rouwkema, J. (2016). Endothelial cell alignment as a result of anisotropic strain and flow induced shear stress combinations. Scientific reports, 6(1), 1-12.
  • Truscello, S., Kerckhofs, G., Van Bael, S., Pyka, G., Schrooten, J., & Van Oosterwyck, H. (2012). Prediction of permeability of regular scaffolds for skeletal tissue engineering: a combined computational and experimental study. Acta biomaterialia, 8(4), 1648-1658.
  • Zhao, F., van Rietbergen, B., Ito, K., & Hofmann, S. (2018). Flow rates in perfusion bioreactors to maximise mineralisation in bone tissue engineering in vitro. Journal of Biomechanics, 79, 232-237.
  • Zhao, F., Vaughan, T. J., & McNamara, L. M. (2016). Quantification of fluid shear stress in bone tissue engineering scaffolds with spherical and cubical pore architectures. Biomechanics and modeling in mechanobiology, 15(3), 561-577.

Evaluation of Permeability Performance of Lattice-Based Porous Structure at Different Pore Ratios in Bone Regeneration

Year 2022, , 75 - 79, 31.03.2022
https://doi.org/10.31590/ejosat.1069194

Abstract

Today, bone loss is frequently encountered due to various reasons such as traumas, bone tumors or osteonecrosis, and the increasing elderly population. With the elimination of bone loss, the patient's quality of life is tried to be preserved, such as maintaining the bone functions of the patient and preserving the aesthetic appearance. With the developing technology, it is quite common to design and manufacture prostheses with a porous structure to replace bone losses. The biomechanical suitability of the prosthesis is investigated by subjecting it to many numerical and experimental analyzes before being put into use for the patient. In this study, it was aimed to investigate the suitability of scaffolds with different porosity ratios with this geometry for bone regeneration by determining an architecture from beam-based truss structures. Accordingly, flow analyzes were carried out numerically to determine the bone-like behavior of the scaffold models. The permeability values were calculated as a result of the flow analyzes made with the Computational Fluid Dynamics method, the flow lines passing through the structure and the wall shear stresses on the surfaces were recorded. All models considered for their permeability performance are above the lower limit of trabecular bone permeability. In terms of wall shear stress, it was observed that stress values that could be negative for bone cell development occurred in scaffolds with 50% and 60% porosity.

References

  • Ali, D., Ozalp, M., Blanquer, S. B., & Onel, S. (2020). Permeability and fluid flow-induced wall shear stress in bone scaffolds with TPMS and lattice architectures: A CFD analysis. European Journal of Mechanics-B/Fluids, 79, 376-385.
  • Arjunan, A., Demetriou, M., Baroutaji, A., & Wang, C. (2020). Mechanical performance of highly permeable laser melted Ti6Al4V bone scaffolds. journal of the mechanical behavior of biomedical materials, 102, 103517.
  • Campoli, G., Borleffs, M. S., Yavari, S. A., Wauthle, R., Weinans, H., & Zadpoor, A. A. (2013). Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing. Materials & Design, 49, 957-965.
  • Dimitriou, R., Jones, E., McGonagle, D., & Giannoudis, P. V. (2011). Bone regeneration: current concepts and future directions. BMC medicine, 9(1), 1-10.
  • Gómez, S., Vlad, M. D., López, J., & Fernández, E. (2016). Design and properties of 3D scaffolds for bone tissue engineering. Acta biomaterialia, 42, 341-350.
  • Grimm, M. J., & Williams, J. L. (1997). Measurements of permeability in human calcaneal trabecular bone. Journal of Biomechanics, 30(7), 743-745.
  • McCoy, R. J., Jungreuthmayer, C., & O'Brien, F. J. (2012). Influence of flow rate and scaffold pore size on cell behavior during mechanical stimulation in a flow perfusion bioreactor. Biotechnology and bioengineering, 109(6), 1583-1594.
  • Melchels, F. P., Tonnarelli, B., Olivares, A. L., Martin, I., Lacroix, D., Feijen, J., ... & Grijpma, D. W. (2011). The influence of the scaffold design on the distribution of adhering cells after perfusion cell seeding. Biomaterials, 32(11), 2878-2884.
  • Nelms, L., & Palmer, W. J. (2019). Tissue engineering in mandibular reconstruction: Osteogenesis-inducing scaffolds. Plastic and Aesthetic Research, 6, 21.
  • Olivares, A. L., Marsal, È., Planell, J. A., & Lacroix, D. (2009). Finite element study of scaffold architecture design and culture conditions for tissue engineering. Biomaterials, 30(30), 6142-6149.
  • Sinha, R., Le Gac, S., Verdonschot, N., van den Berg, A., Koopman, B., & Rouwkema, J. (2016). Endothelial cell alignment as a result of anisotropic strain and flow induced shear stress combinations. Scientific reports, 6(1), 1-12.
  • Truscello, S., Kerckhofs, G., Van Bael, S., Pyka, G., Schrooten, J., & Van Oosterwyck, H. (2012). Prediction of permeability of regular scaffolds for skeletal tissue engineering: a combined computational and experimental study. Acta biomaterialia, 8(4), 1648-1658.
  • Zhao, F., van Rietbergen, B., Ito, K., & Hofmann, S. (2018). Flow rates in perfusion bioreactors to maximise mineralisation in bone tissue engineering in vitro. Journal of Biomechanics, 79, 232-237.
  • Zhao, F., Vaughan, T. J., & McNamara, L. M. (2016). Quantification of fluid shear stress in bone tissue engineering scaffolds with spherical and cubical pore architectures. Biomechanics and modeling in mechanobiology, 15(3), 561-577.
There are 14 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Derya Karaman 0000-0001-5371-9332

Hüccet Kahramanzade 0000-0002-9078-1933

Publication Date March 31, 2022
Published in Issue Year 2022

Cite

APA Karaman, D., & Kahramanzade, H. (2022). Kemik Rejenerasyonu için Farklı Gözenek Oranlarındaki Kafes Tabanlı Gözenekli Yapının Geçirgenlik Performansının Değerlendirilmesi. Avrupa Bilim Ve Teknoloji Dergisi(34), 75-79. https://doi.org/10.31590/ejosat.1069194