Weak stability of 𝜺-isometry Mapping on Real Banach Spaces
Year 2022,
, 110 - 114, 31.03.2022
Minanur Rohman
,
İlker Eryılmaz
Abstract
The stability of standard 𝜀-isometry mapping in real Banach spaces cannot be determined without using the assumption of surjectivity. However, this mapping remains weakly stable under weak topology. Using this weak stability, there is a bounded linear left-inverse for non-surjective 𝜀-isometry.
References
- Benyamini, Y., & Lindenstrauss, J. (2000). Geometric nonlinear Functional Analysis I, Colloquium publications, vol. 48. American Mathematical Society.
- Bourgin, D. G. (1946). Aproximate isometries. Bull. Amer. Math. Soc, 52(8), 704-714. https://doi.org/10.1090/S0002-9904-1946-08638-3
- Cheng, L., & Dong, Y. (2020). Corrigendum to ‘A universal theorem for stability of 𝜀-isometries of Banach spaces’, Jour. Func. Anal., 269(1), 199-214, 2015. Jour. Func. Anal.,
279, 108518. https://doi.org/10.1016/j.jfa.2020.108518
- Cheng, L., & Dong, Y. (2020). A note on the stability of nonsurjective 𝜀-isometries of Banach spaces, Proc. Amer. Math. Soc., 148, 4837-4844. https://doi.org/10.1090/proc/15110
- Cheng, L., Dong, Y., & Zhang, W. (2013). On stability of nonlinear non-surjective 𝜀-isometries of Banach spaces. Jour. Func. Anal., 264(3), 713-734. https://doi.org/10.1016/j.jfa.2012.11.008
- Dilworth, S. J. (1999). Approximate isometries on finite dimensional normed spaces. Bull. Lond. Math. Soc., 31(4), 471-476, 1999. https://doi.org/10.1112/S0024609398005591
- Dutrieux, Y., & Lancien, G. (2008). Isometric embeddings of compact spaces into Banach spaces. Jour. Func. Anal., 255(2), 494-501. https://doi.org/10.1016/j.jfa.2008.04.002
- Fabian, M., Habala, P., Hájek, P., Montesinos, V., & Zizler, V. (2010). Banach Space Theory : The Basis for Linear and Nonlinear Analysis. Springer.
- Figiel, T. (1968). On nonlinear isometric embedding of normed linear space. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 16, 185-188.
- Gevirtz, J. (1983). Stability of isometries on Banach spaces. Proc. Amer. Math. Soc., 89(4), 633-636. https://doi.org/10.2307/2044596
- Gruber, P. M. (1978). Stability of isometries. Trans. Amer. Math. Soc., 245, 263-277. https://doi.org/10.1090/S0002-9947-1978-0511409-2
- Hyers, D. H., & Ulam, S. M. (1945). On approximate isometries. Bull. Amer. Math. Soc., 51(4), 288-292. https://doi.org/10.1090/S0002-9904-1945-08337-2
- Larman, D.G., & Phelps, R. R. (1979). Gateaux differentiability of convex functions on Banach spaces. Jour. Lond. Math. Soc., S2-20, 115-127. https://doi.org/10.1112/jlms/s2-20.1.115
- Mazur, S. & Ulam, S. (1932) Sur les transformations isométriques d’espaces vectoriels normés. C R Acad. Sci. Paris., 194, 946-948.
- Megginson, R. E. (1991). An Introduction to Banach Space Theory. Springer.
- Mukherjea, K. (2007). Differential Calculus in Normed Linear Spaces (2nd ed.). Hindustan Book Agency.
- Omladič, M. & Šemrl, P. (1995). On Nonlinear Perturbation of Isometries. Math. Ann., 303, 617-628.
- Phleps, R. R. (1993) Convex Functions, Monotone Operators, and Differentiability, Lecture Note in Mathematics, vol. 1364. Springer-Verlag, 1993.
- Qian, S. (1995). 𝜀-isometries embeddings. Proc. Amer. Math. Soc., 123(6), 1797-1803. https://doi.org/10.2307/2160993
- Rohman, M., Wibowo, R. B. E., & Marjono. (2016). Stability of an almost surjective epsilon-isometry mapping in the dual of real Banach spaces. Aust. Jour. Math. Anal. App., 13, 1-9.
- Schirotzek, W. (2007). Nonsmooth Analysis. Springer.
- Šemrl, P., & Väisälä, J. (2003). Nonsurjective nearisometris of Banach Spaces. J. Funct. Anal., 198(1), 268-278.
https://doi.org/10.1016/S0022-1236(02)00049-6
- Tabor, J. (2000). Stability of surjectivity. J. Approx. Theory, 105(1), 166-175.
https://doi.org/10.1006/jath.2000.3452
- Vestfrid, I. A. (2015). Stability of almost surjective ε-isometries of Banach spaces. J. Funct. Anal., 269(7), 2165-2170.
https://doi.org/10.1016/j.jfa.2015.04.009
- Zhou, Y., Zhang, Z., & Liu, C. (2016). On linear isometries and ε-isometries between Banach spaces. Jour. Math. Anal. App., 435(1), 754-764.
https://doi.org/10.1016/j.jmaa.2015.10.035
- Bishop, E., & Phelps, R. R. (1961). A proof that every Banach space is subreflexive. Bull. Amer. Math. Soc., 67, 97-98. https://doi.org/10.1090/S0002-9904-1961-10514-4
Weak stability of 𝜺-isometry Mapping on Real Banach Spaces
Year 2022,
, 110 - 114, 31.03.2022
Minanur Rohman
,
İlker Eryılmaz
Abstract
The stability of standard 𝜀-isometry mapping in real Banach spaces cannot be determined without using the assumption of surjectivity. However, this mapping remains weakly stable under weak topology. Using this weak stability, there is a bounded linear left-inverse for non-surjective 𝜀-isometry.
References
- Benyamini, Y., & Lindenstrauss, J. (2000). Geometric nonlinear Functional Analysis I, Colloquium publications, vol. 48. American Mathematical Society.
- Bourgin, D. G. (1946). Aproximate isometries. Bull. Amer. Math. Soc, 52(8), 704-714. https://doi.org/10.1090/S0002-9904-1946-08638-3
- Cheng, L., & Dong, Y. (2020). Corrigendum to ‘A universal theorem for stability of 𝜀-isometries of Banach spaces’, Jour. Func. Anal., 269(1), 199-214, 2015. Jour. Func. Anal.,
279, 108518. https://doi.org/10.1016/j.jfa.2020.108518
- Cheng, L., & Dong, Y. (2020). A note on the stability of nonsurjective 𝜀-isometries of Banach spaces, Proc. Amer. Math. Soc., 148, 4837-4844. https://doi.org/10.1090/proc/15110
- Cheng, L., Dong, Y., & Zhang, W. (2013). On stability of nonlinear non-surjective 𝜀-isometries of Banach spaces. Jour. Func. Anal., 264(3), 713-734. https://doi.org/10.1016/j.jfa.2012.11.008
- Dilworth, S. J. (1999). Approximate isometries on finite dimensional normed spaces. Bull. Lond. Math. Soc., 31(4), 471-476, 1999. https://doi.org/10.1112/S0024609398005591
- Dutrieux, Y., & Lancien, G. (2008). Isometric embeddings of compact spaces into Banach spaces. Jour. Func. Anal., 255(2), 494-501. https://doi.org/10.1016/j.jfa.2008.04.002
- Fabian, M., Habala, P., Hájek, P., Montesinos, V., & Zizler, V. (2010). Banach Space Theory : The Basis for Linear and Nonlinear Analysis. Springer.
- Figiel, T. (1968). On nonlinear isometric embedding of normed linear space. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 16, 185-188.
- Gevirtz, J. (1983). Stability of isometries on Banach spaces. Proc. Amer. Math. Soc., 89(4), 633-636. https://doi.org/10.2307/2044596
- Gruber, P. M. (1978). Stability of isometries. Trans. Amer. Math. Soc., 245, 263-277. https://doi.org/10.1090/S0002-9947-1978-0511409-2
- Hyers, D. H., & Ulam, S. M. (1945). On approximate isometries. Bull. Amer. Math. Soc., 51(4), 288-292. https://doi.org/10.1090/S0002-9904-1945-08337-2
- Larman, D.G., & Phelps, R. R. (1979). Gateaux differentiability of convex functions on Banach spaces. Jour. Lond. Math. Soc., S2-20, 115-127. https://doi.org/10.1112/jlms/s2-20.1.115
- Mazur, S. & Ulam, S. (1932) Sur les transformations isométriques d’espaces vectoriels normés. C R Acad. Sci. Paris., 194, 946-948.
- Megginson, R. E. (1991). An Introduction to Banach Space Theory. Springer.
- Mukherjea, K. (2007). Differential Calculus in Normed Linear Spaces (2nd ed.). Hindustan Book Agency.
- Omladič, M. & Šemrl, P. (1995). On Nonlinear Perturbation of Isometries. Math. Ann., 303, 617-628.
- Phleps, R. R. (1993) Convex Functions, Monotone Operators, and Differentiability, Lecture Note in Mathematics, vol. 1364. Springer-Verlag, 1993.
- Qian, S. (1995). 𝜀-isometries embeddings. Proc. Amer. Math. Soc., 123(6), 1797-1803. https://doi.org/10.2307/2160993
- Rohman, M., Wibowo, R. B. E., & Marjono. (2016). Stability of an almost surjective epsilon-isometry mapping in the dual of real Banach spaces. Aust. Jour. Math. Anal. App., 13, 1-9.
- Schirotzek, W. (2007). Nonsmooth Analysis. Springer.
- Šemrl, P., & Väisälä, J. (2003). Nonsurjective nearisometris of Banach Spaces. J. Funct. Anal., 198(1), 268-278.
https://doi.org/10.1016/S0022-1236(02)00049-6
- Tabor, J. (2000). Stability of surjectivity. J. Approx. Theory, 105(1), 166-175.
https://doi.org/10.1006/jath.2000.3452
- Vestfrid, I. A. (2015). Stability of almost surjective ε-isometries of Banach spaces. J. Funct. Anal., 269(7), 2165-2170.
https://doi.org/10.1016/j.jfa.2015.04.009
- Zhou, Y., Zhang, Z., & Liu, C. (2016). On linear isometries and ε-isometries between Banach spaces. Jour. Math. Anal. App., 435(1), 754-764.
https://doi.org/10.1016/j.jmaa.2015.10.035
- Bishop, E., & Phelps, R. R. (1961). A proof that every Banach space is subreflexive. Bull. Amer. Math. Soc., 67, 97-98. https://doi.org/10.1090/S0002-9904-1961-10514-4