Research Article
BibTex RIS Cite

Biyokütleden Elde Edilen Biyoyakıtlara Genel Bir Bakış

Year 2022, , 193 - 201, 31.03.2022
https://doi.org/10.31590/ejosat.1079255

Abstract

Artan nüfus nedeniyle enerji ihtiyaçlarının artması ve mevcut fosil yakıtların gelecek yıllarda bu ihtiyacı karşılayamayacak olması araştırmacıları yeni ve yenilenebilir enerji arayışına yöneltmiştir. Biyoyakıtlara olan ilginin gün geçtikçe artma nedenlerinden biri de çevre kirliliğine neden olmamasıdır. Biyoyakıt kullanımının geliştirilmesi tarımın gelişmesini de teşvik eder. Ayrıca ülkemizdeki kırsal kalkınmayı da destekler. Yeni ve yenilenebilir enerji kaynağı olan ve biyoyakıt üretmek için hammadde olarak kullanılan biyokütle; elektrik üretiminde, ısıtma ve soğutma uygulamalarında, evsel ihtiyaçlarda, yakıt olarak ve endüstriyel uygulamalarda kullanılmaktadır. Biyokütle kaynağı olarak genellikle tarımsal atıklar, yağlı tohum bitkileri, karbonhidrat içeren bitkiler, hayvan ve insan atıkları, belediye atıkları ve endüstriyel atıklar kullanılmaktadır. Ülkemizde biyokütle kaynağından elde edilen biyoyakıtlardan elektrik üretilmesindeki en yüksek payı biyogaz almaktadır. Biyogazı ise birincil biyoyakıtlar takip etmektedir. Biyoyakıtlar biyodizel, biyogaz, biyoetanol, biyometanol, biyodimetil eter, biyoyağ, biyobütanol ve biyohidrojen olarak sınıflandırılmaktadır. Çalışmamızda bu biyoyakıt çeşitleri tek tek açıklanmıştır. Her bir biyoyakıt çeşidinin olumlu ve olumsuz yönlerine, nasıl elde edildiklerine ve nerelerde kullanıldıklarına değinilmiştir. Biyoetanol karbonhidrat bakımından zengin olan bitkilerden; biyometanol hayvansal atıklardan, çöplüklerden ve gıda atıkları gibi atıklardan; biyodizel yağlı tohum bitkilerinden elde edilen yağlardan ya da hayvansal yağlardan; biyodimetil eter metan ve karbondioksit içeren yenmeyen atıklardan; biyobütanol şeker ve tahıl gibi birinci nesil biyoyakıtlar ile tarım ve orman atıkları gibi yenilmeyen lignoselülozik malzemelerden; biyohidrojen tarımsal, odun, gıda, kanalizasyon, insan ve hayvan atıkları ile alglerden; biyogaz ise bitkisel ve hayvansal atıklardan elde edilmektedir.

References

  • Stöcker, M. (2008). Biofuels and biomass‐to‐liquid fuels in the biorefinery: Catalytic conversion of lignocellulosic biomass using porous materials. Angewandte Chemie International Edition, 47(48), 9200-9211.
  • Demirbas, A. (2000). Biomass resources for energy and chemical industry. Energy Edu. Sci. Technol, 5(1), 21-45.
  • Bülent İlleez, Türkiye’nin enerji görünümü, biyokütle ve biyokütle enerjisi, 317-346.
  • Demirbas, A. 2000b. Recent advances in biomass conversion technologies. Energy Edu.zszz Sci. Technol., 6: 19–40.
  • Jenkins, B., Baxter, L. L., Miles Jr, T. R., & Miles, T. R. (1998). Combustion properties of biomass. Fuel processing technology, 54(1-3), 17-46.
  • Vassilev, S. V., Vassileva, C. G., & Vassilev, V. S. (2015). Advantages and disadvantages of composition and properties of biomass in comparison with coal: An overview. Fuel, 158, 330-350.
  • Demirbas, A. (2009). Political, economic and environmental impacts of biofuels: A review. Applied energy, 86, S108-S117.
  • Kumar, M., & Gayen, K. (2011). Developments in biobutanol production: new insights. Applied Energy, 88(6), 1999-2012.
  • Karaosmanoğlu, F. (2006). Biyoyakıt teknolojisi ve İTÜ araştırmaları. İstanbul: İTÜ Matbaası.
  • Rodionova, M. V., Poudyal, R. S., Tiwari, I., Voloshin, R. A., Zharmukhamedov, S. K., Nam, H. G., ... & Allakhverdiev, S. I. (2017). Biofuel production: challenges and opportunities. International Journal of Hydrogen Energy, 42(12), 8450-8461.
  • Sustainable biofuels: prospects and challenges, The Royal Society. Policy document 01/08, ISBN 978 0 85403 662 2. Reproduced with permission of the Royal Society.
  • Vassilev, S. V., Baxter, D., Andersen, L. K., & Vassileva, C. G. (2013). An overview of the composition and application of biomass ash.: Part 2. Potential utilisation, technological and ecological advantages and challenges. Fuel, 105, 19-39.
  • Nigam, P. S., & Singh, A. (2011). Production of liquid biofuels from renewable resources. Progress in energy and combustion science, 37(1), 52-68.
  • Agriculture Organization. (2008). The State of Food and Agriculture 2008: Biofuels: prospects, risks and opportunities, Food & Agriculture Org., Vol. 38.
  • Sims, R. E., Mabee, W., Saddler, J. N., & Taylor, M. (2010). An overview of second generation biofuel technologies. Bioresource technology, 101(6), 1570-1580.
  • Bacovsky, D., Dallos, M., Wörgetter, M., & Task, I. B. (2010). Status of 2nd generation biofuels demonstration facilities in June 2010. IEA Bioenergy Task 39: Commercializing 1st and 2nd generation liquid biofuels from biomass, 39, 1-126.
  • Zabaniotou, A., Ioannidou, O., & Skoulou, V. (2008). Rapeseed residues utilization for energy and 2nd generation biofuels. Fuel, 87(8-9), 1492-1502.
  • EİE. (2021). Türkiye Biyokütle Enerji Potansiyeli, Enerji İşleri Genel Müdürlüğü, T.C. Enerji ve Tabii Kaynaklar Bakanlığı. Retrieved November 23, 2021, from https://bepa.enerji.gov.tr/
  • İEA. (2021). Biyoyakıt ve biyokütle kaynaklarından elektrik üretimi, Türkiye 2010-2020, Uluslararası Enerji Ajansı. Retrieved November 23, 2021, from https://www.iea.org/fuels-and-technologies/renewables
  • Bengisu, G. (2014). Alternatif yakıt kaynağı olarak biyoetanol. Alinteri Journal of Agriculture Science, 27(2), 43-52.
  • Demirbaş, A. (2005). Bioethanol from cellulosic materials: a renewable motor fuel from biomass. Energy sources, 27(4), 327-337.
  • Mussatto, S. I., Dragone, G., Guimarães, P. M., Silva, J. P. A., Carneiro, L. M., Roberto, I. C., ... & Teixeira, J. A. (2010). Technological trends, global market, and challenges of bio-ethanol production. Biotechnology advances, 28(6), 817-830.
  • Methanol. (2021). Retrieved November 24, 2021, from https://www.methanol.org/about-methanol/
  • Ng, K. S., & Sadhukhan, J. (2011). Process integration and economic analysis of bio-oil platform for the production of methanol and combined heat and power. Biomass and Bioenergy, 35(3), 1153-1169.
  • Pérez-Fortes, M., Schöneberger, J. C., Boulamanti, A., & Tzimas, E. (2016). Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental assessment. Applied Energy, 161, 718-732.
  • Archive. (2021). Retrieved November 24, 2021, from https://web.archive.org/web/20171017004604/https://www.socalgas.com/smart-energy/benefits-of-natural-gas/renewable
  • Shamsul, N. S., Kamarudin, S. K., Rahman, N. A., & Kofli, N. T. (2014). An overview on the production of bio-methanol as potential renewable energy. Renewable and Sustainable Energy Reviews, 33, 578-588.
  • Demirbas, A. (2008). Biodiesel. Springer London, 111-119.
  • Dağdelen, 2015. Küresel Biyoyakıt Politikalarının AB ve Türkiye Açısından Değerlendirilmesi, AB Uzmanlık Tezi, Ankara.
  • AFDC Energy Retrieved. (2022). February 17, 2022, from Energy Efficiency and Renewable Energy, Biodiesel Fuel Basics.https://afdc.energy.gov/fuels/biodiesel_basics.html
  • Anastopoulos, G., Zannikou, Y., Stournas, S., & Kalligeros, S. (2009). Transesterification of vegetable oils with ethanol and characterization of the key fuel properties of ethyl esters. Energies, 2(2), 362-376.
  • Panigrahy, S., & Mishra, S. C. (2018). The combustion characteristics and performance evaluation of DME (dimethyl ether) as an alternative fuel in a two-section porous burner for domestic cooking application. Energy, 150, 176-189.
  • Öhrman, O. G., & Pettersson, E. (2013). Dewatering of biomass using liquid bio dimethyl ether. Drying Technology, 31(11), 1267-1273.
  • Ying, W., Longbao, Z., & Wei, L. (2010). Effects of DME pilot quantity on the performance of a DME PCCI-DI engine. Energy conversion and management, 51(4), 648-654.
  • Xiu, S., & Shahbazi, A. (2012). Bio-oil production and upgrading research: A review. Renewable and Sustainable Energy Reviews, 16(7), 4406-4414.
  • Jacobson, K., Maheria, K. C., & Dalai, A. K. (2013). Bio-oil valorization: A review. Renewable and Sustainable Energy Reviews, 23, 91-106.
  • Ranjan, A., & Moholkar, V. S. (2012). Biobutanol: science, engineering, and economics. International Journal of Energy Research, 36(3), 277-323.
  • Durre, P. (2007). Biobutanol: an attractive biofuel. Biotechnol. J., 2, 1525-1534.
  • Kotay, S. M., & Das, D. (2008). Biohydrogen as a renewable energy resource—prospects and potentials. International Journal of Hydrogen Energy, 33(1), 258-263.
  • Boyles, D. T. (1984). Bio-energy: Technology, Thermodynamics, and Costs (Vol. 1, No. 624). Ellis Horwood.
  • Genç, N. (2009). Biyolojik hidrojen üretim prosesleri. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 11(2), 17-36.
  • Dursun, N., & Gülşen, H. (2019). Biyohidrojen Üretim Yöntemleri ve Biyohidrojen Üretiminde Biyoreaktörlerin Kullanımı. Journal of the Institute of Science and Technology, 9(1), 66-75.
  • Şentürk, İ., & Büyükgüngör, H. (2015). Anaerobik fermentasyonla biyohidrojen üretim verimine etki eden faktörler. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 19(2), 171-186..
  • Hosseini SE, Wahid MA, 2016. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renewable and Sustainable Energy Reviews, 57: 850-866.
  • De Souza, S. N., Santos, R.F., & Fracaro, G.P. (2011). Potential for the production of biogas in alcohol and sugar cane plants for use in urban buses in the Brazil. World Renewable Energy Congress-Sweden; Linköping University Electronic Press, Linköping; Sweden, 418.
  • Rao, P. V., Baral, S. S., Dey, R. and Mutnuri, S. (2010). Biogas generation potential by anaerobic digestion for sustainable energy development in India. Renewable and sustainable energy reviews, 14(7), 2086-2094.
  • Villadsen, S. N., Fosbøl, P. L., Angelidaki, I., Woodley, J. M., Nielsen, L. P., & Møller, P. (2019). The potential of biogas; the solution to energy storage. ChemSusChem, 12(10), 2147-2153.
  • Plugge, C. M. (2017). Biogas. Microbial biotechnology, 10(5), 1128-1130.
  • Biogas Renewable Energy. (2022). Retrieved February 17, 2021, from https://www.biogas-renewable-energy.info/
  • Biogas. (2022). Retrieved February 17, 2022, from https://www.europeanbiogas.eu/biogas-a-necessary-solution-to-foster-eus-energy-transition/
  • Parsaee, M., Kiani, M. K. D., & Karimi, K. (2019). A review of biogas production from sugarcane vinasse. Biomass and bioenergy, 122, 117-125.
  • Christy, P. M., Gopinath, L. R., & Divya, D. (2014). review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renewable and Sustainable Energy Reviews, 34, 167-173.
  • Petravić-Tominac, V., Nastav, N., Buljubašić, M. & Šantek, B. (2020). Current state of biogas production in Croatia. Energy, Sustainability and Society, 10(1), 1-10.
  • Kougias, P. G., & Angelidaki, I. (2018). Biogas and its opportunities-A review. Frontiers of Environmental Science & Engineering, 12(3), 1-12.

An Overview of Biofuels Derived from Biomass

Year 2022, , 193 - 201, 31.03.2022
https://doi.org/10.31590/ejosat.1079255

Abstract

The increase in energy needs due to the increasing population and the fact that existing fossil fuels will not be able to meet this need in the coming years have led researchers to seek new and renewable energy sources. One of the reasons why the interest in biofuels is increasing day by day is that it does not cause environmental pollution. Improving the use of biofuels also encourages the development of agriculture. It also supports rural development in our country. Biomass, which is a new and renewable energy source and used as a raw material to produce biofuels; It is used in electricity generation, heating and cooling applications, domestic needs, fuel and industrial applications. Agricultural wastes, oilseed crops, plants containing carbohydrates, animal and human wastes, municipal wastes and industrial wastes are generally used as biomass sources. In our country, biogas has the highest share in electricity generation from biofuels obtained from biomass sources. Biogas is followed by primary biofuels. Biofuels are classified as biodiesel, biogas, bioethanol, biomethanol, biodimethyl ether, biooil, biobutanol and biohydrogen. In our study, these biofuel types are explained one by one. The positive and negative aspects of each biofuel type, how they are obtained and where they are used are mentioned. Bioethanol is one of the plants rich in carbohydrates, biomethanol is produced from animal waste, landfills and waste such as food waste. Biodiesel is made from oils obtained from oilseed plants or from animal fats, from inedible waste containing bio dimethyl ether methane and carbon dioxide. Bioethanol is made from first generation biofuels such as sugar and grains, and inedible lignocellulosic materials such as agricultural and forestry wastes. Biohydrogen from agricultural, wood, food, sewage, human and animal wastes and algae, biogas is obtained from plant and animal wastes.

References

  • Stöcker, M. (2008). Biofuels and biomass‐to‐liquid fuels in the biorefinery: Catalytic conversion of lignocellulosic biomass using porous materials. Angewandte Chemie International Edition, 47(48), 9200-9211.
  • Demirbas, A. (2000). Biomass resources for energy and chemical industry. Energy Edu. Sci. Technol, 5(1), 21-45.
  • Bülent İlleez, Türkiye’nin enerji görünümü, biyokütle ve biyokütle enerjisi, 317-346.
  • Demirbas, A. 2000b. Recent advances in biomass conversion technologies. Energy Edu.zszz Sci. Technol., 6: 19–40.
  • Jenkins, B., Baxter, L. L., Miles Jr, T. R., & Miles, T. R. (1998). Combustion properties of biomass. Fuel processing technology, 54(1-3), 17-46.
  • Vassilev, S. V., Vassileva, C. G., & Vassilev, V. S. (2015). Advantages and disadvantages of composition and properties of biomass in comparison with coal: An overview. Fuel, 158, 330-350.
  • Demirbas, A. (2009). Political, economic and environmental impacts of biofuels: A review. Applied energy, 86, S108-S117.
  • Kumar, M., & Gayen, K. (2011). Developments in biobutanol production: new insights. Applied Energy, 88(6), 1999-2012.
  • Karaosmanoğlu, F. (2006). Biyoyakıt teknolojisi ve İTÜ araştırmaları. İstanbul: İTÜ Matbaası.
  • Rodionova, M. V., Poudyal, R. S., Tiwari, I., Voloshin, R. A., Zharmukhamedov, S. K., Nam, H. G., ... & Allakhverdiev, S. I. (2017). Biofuel production: challenges and opportunities. International Journal of Hydrogen Energy, 42(12), 8450-8461.
  • Sustainable biofuels: prospects and challenges, The Royal Society. Policy document 01/08, ISBN 978 0 85403 662 2. Reproduced with permission of the Royal Society.
  • Vassilev, S. V., Baxter, D., Andersen, L. K., & Vassileva, C. G. (2013). An overview of the composition and application of biomass ash.: Part 2. Potential utilisation, technological and ecological advantages and challenges. Fuel, 105, 19-39.
  • Nigam, P. S., & Singh, A. (2011). Production of liquid biofuels from renewable resources. Progress in energy and combustion science, 37(1), 52-68.
  • Agriculture Organization. (2008). The State of Food and Agriculture 2008: Biofuels: prospects, risks and opportunities, Food & Agriculture Org., Vol. 38.
  • Sims, R. E., Mabee, W., Saddler, J. N., & Taylor, M. (2010). An overview of second generation biofuel technologies. Bioresource technology, 101(6), 1570-1580.
  • Bacovsky, D., Dallos, M., Wörgetter, M., & Task, I. B. (2010). Status of 2nd generation biofuels demonstration facilities in June 2010. IEA Bioenergy Task 39: Commercializing 1st and 2nd generation liquid biofuels from biomass, 39, 1-126.
  • Zabaniotou, A., Ioannidou, O., & Skoulou, V. (2008). Rapeseed residues utilization for energy and 2nd generation biofuels. Fuel, 87(8-9), 1492-1502.
  • EİE. (2021). Türkiye Biyokütle Enerji Potansiyeli, Enerji İşleri Genel Müdürlüğü, T.C. Enerji ve Tabii Kaynaklar Bakanlığı. Retrieved November 23, 2021, from https://bepa.enerji.gov.tr/
  • İEA. (2021). Biyoyakıt ve biyokütle kaynaklarından elektrik üretimi, Türkiye 2010-2020, Uluslararası Enerji Ajansı. Retrieved November 23, 2021, from https://www.iea.org/fuels-and-technologies/renewables
  • Bengisu, G. (2014). Alternatif yakıt kaynağı olarak biyoetanol. Alinteri Journal of Agriculture Science, 27(2), 43-52.
  • Demirbaş, A. (2005). Bioethanol from cellulosic materials: a renewable motor fuel from biomass. Energy sources, 27(4), 327-337.
  • Mussatto, S. I., Dragone, G., Guimarães, P. M., Silva, J. P. A., Carneiro, L. M., Roberto, I. C., ... & Teixeira, J. A. (2010). Technological trends, global market, and challenges of bio-ethanol production. Biotechnology advances, 28(6), 817-830.
  • Methanol. (2021). Retrieved November 24, 2021, from https://www.methanol.org/about-methanol/
  • Ng, K. S., & Sadhukhan, J. (2011). Process integration and economic analysis of bio-oil platform for the production of methanol and combined heat and power. Biomass and Bioenergy, 35(3), 1153-1169.
  • Pérez-Fortes, M., Schöneberger, J. C., Boulamanti, A., & Tzimas, E. (2016). Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental assessment. Applied Energy, 161, 718-732.
  • Archive. (2021). Retrieved November 24, 2021, from https://web.archive.org/web/20171017004604/https://www.socalgas.com/smart-energy/benefits-of-natural-gas/renewable
  • Shamsul, N. S., Kamarudin, S. K., Rahman, N. A., & Kofli, N. T. (2014). An overview on the production of bio-methanol as potential renewable energy. Renewable and Sustainable Energy Reviews, 33, 578-588.
  • Demirbas, A. (2008). Biodiesel. Springer London, 111-119.
  • Dağdelen, 2015. Küresel Biyoyakıt Politikalarının AB ve Türkiye Açısından Değerlendirilmesi, AB Uzmanlık Tezi, Ankara.
  • AFDC Energy Retrieved. (2022). February 17, 2022, from Energy Efficiency and Renewable Energy, Biodiesel Fuel Basics.https://afdc.energy.gov/fuels/biodiesel_basics.html
  • Anastopoulos, G., Zannikou, Y., Stournas, S., & Kalligeros, S. (2009). Transesterification of vegetable oils with ethanol and characterization of the key fuel properties of ethyl esters. Energies, 2(2), 362-376.
  • Panigrahy, S., & Mishra, S. C. (2018). The combustion characteristics and performance evaluation of DME (dimethyl ether) as an alternative fuel in a two-section porous burner for domestic cooking application. Energy, 150, 176-189.
  • Öhrman, O. G., & Pettersson, E. (2013). Dewatering of biomass using liquid bio dimethyl ether. Drying Technology, 31(11), 1267-1273.
  • Ying, W., Longbao, Z., & Wei, L. (2010). Effects of DME pilot quantity on the performance of a DME PCCI-DI engine. Energy conversion and management, 51(4), 648-654.
  • Xiu, S., & Shahbazi, A. (2012). Bio-oil production and upgrading research: A review. Renewable and Sustainable Energy Reviews, 16(7), 4406-4414.
  • Jacobson, K., Maheria, K. C., & Dalai, A. K. (2013). Bio-oil valorization: A review. Renewable and Sustainable Energy Reviews, 23, 91-106.
  • Ranjan, A., & Moholkar, V. S. (2012). Biobutanol: science, engineering, and economics. International Journal of Energy Research, 36(3), 277-323.
  • Durre, P. (2007). Biobutanol: an attractive biofuel. Biotechnol. J., 2, 1525-1534.
  • Kotay, S. M., & Das, D. (2008). Biohydrogen as a renewable energy resource—prospects and potentials. International Journal of Hydrogen Energy, 33(1), 258-263.
  • Boyles, D. T. (1984). Bio-energy: Technology, Thermodynamics, and Costs (Vol. 1, No. 624). Ellis Horwood.
  • Genç, N. (2009). Biyolojik hidrojen üretim prosesleri. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 11(2), 17-36.
  • Dursun, N., & Gülşen, H. (2019). Biyohidrojen Üretim Yöntemleri ve Biyohidrojen Üretiminde Biyoreaktörlerin Kullanımı. Journal of the Institute of Science and Technology, 9(1), 66-75.
  • Şentürk, İ., & Büyükgüngör, H. (2015). Anaerobik fermentasyonla biyohidrojen üretim verimine etki eden faktörler. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 19(2), 171-186..
  • Hosseini SE, Wahid MA, 2016. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renewable and Sustainable Energy Reviews, 57: 850-866.
  • De Souza, S. N., Santos, R.F., & Fracaro, G.P. (2011). Potential for the production of biogas in alcohol and sugar cane plants for use in urban buses in the Brazil. World Renewable Energy Congress-Sweden; Linköping University Electronic Press, Linköping; Sweden, 418.
  • Rao, P. V., Baral, S. S., Dey, R. and Mutnuri, S. (2010). Biogas generation potential by anaerobic digestion for sustainable energy development in India. Renewable and sustainable energy reviews, 14(7), 2086-2094.
  • Villadsen, S. N., Fosbøl, P. L., Angelidaki, I., Woodley, J. M., Nielsen, L. P., & Møller, P. (2019). The potential of biogas; the solution to energy storage. ChemSusChem, 12(10), 2147-2153.
  • Plugge, C. M. (2017). Biogas. Microbial biotechnology, 10(5), 1128-1130.
  • Biogas Renewable Energy. (2022). Retrieved February 17, 2021, from https://www.biogas-renewable-energy.info/
  • Biogas. (2022). Retrieved February 17, 2022, from https://www.europeanbiogas.eu/biogas-a-necessary-solution-to-foster-eus-energy-transition/
  • Parsaee, M., Kiani, M. K. D., & Karimi, K. (2019). A review of biogas production from sugarcane vinasse. Biomass and bioenergy, 122, 117-125.
  • Christy, P. M., Gopinath, L. R., & Divya, D. (2014). review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renewable and Sustainable Energy Reviews, 34, 167-173.
  • Petravić-Tominac, V., Nastav, N., Buljubašić, M. & Šantek, B. (2020). Current state of biogas production in Croatia. Energy, Sustainability and Society, 10(1), 1-10.
  • Kougias, P. G., & Angelidaki, I. (2018). Biogas and its opportunities-A review. Frontiers of Environmental Science & Engineering, 12(3), 1-12.
There are 54 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Sinem Işık 0000-0002-1044-5092

Sıraç Yavuz 0000-0001-5878-8994

Publication Date March 31, 2022
Published in Issue Year 2022

Cite

APA Işık, S., & Yavuz, S. (2022). Biyokütleden Elde Edilen Biyoyakıtlara Genel Bir Bakış. Avrupa Bilim Ve Teknoloji Dergisi(34), 193-201. https://doi.org/10.31590/ejosat.1079255