Research Article
BibTex RIS Cite

Akımsız Kaplama Yöntemi ile Üretilen Ni-W-P Çoklu Alaşımların Sertlik ve Aşınma Özelliklerine Sodyum Tungsten İçeriğinin Etkisi

Year 2022, , 299 - 304, 31.03.2022
https://doi.org/10.31590/ejosat.1081743

Abstract

Akımsız Nikel esaslı kaplamalar malzemelerin aşınma, sertlik ve korozyon gibi yüzey özelliklerini iyileştirmek için otomotiv, havacılık, savunma ve kimya gibi birçok üretim alanında sıklıkla kullanılmaktadır. Akımsız kaplamalar birçok sektörde ikili Ni-P ve Ni-B kaplamalar olarak anılmaktadır. Birçok sektördeki bu yaygın kullanım, yüzey mühendisliği alanında çoklu alaşımların ve kompozitlerin üretilmesini ve araştırılmasını popüler hale getirmektedir. Alüminyum ise uygun maliyeti, mükemmel ısı iletkenliği, yüksek mukavemet/ağırlık oranı özelliklerine sahip, geri dönüştürülebilir bir malzeme olması nedeniyle endüstride demirden sonra en çok kullanılan malzemelerden biri olmuştur. Alüminyum alaşımlarının bu iyi özelliklerinin yanında düşük aşınma dayanımları ve düşük sertlikleri endüstrideki bazı kullanım alanlarını sınırlamaktadır. Bu çalışma kapsamında, alüminyum altlık üzerine kimyasal indirgeme yöntemi ile Ni-P kaplama banyosuna farklı oranlarda sodyum tungsten içerikleri eklenerek Ni-W-P kaplamalar üretilmiştir. Yapılan çalışmada tungsten oranının kaplamanın mikro yapısına, kaplama kalınlığına, sertliğine ve aşınma özelliklerine etkisi incelenmiştir. Bu amaçla alüminyum alaşımlarının yüzey özelliklerini geliştirmek için bazik hipofosfit banyosu kullanılarak 40, 60, 80 g/L sodyum tungsten içeren Nikel esaslı çoklu alaşım kaplamalar alüminyum altlık yüzeyine indirgenmiştir. Optimum sodyum tungsten oranı yapılan karakterizasyonlar sonunda tespit edilmiştir. Üretilen kaplamaların mikro yapı görüntülerinin incelenmesi için Alan Emisyonlu Taramalı Elektron Mikroskobu (FE-SEM), faz yapılarını belirlemek için X-ışını kırınım (XRD) analizi gerçekleştirilmiştir. Üretilen kaplamaların sertliklerini tespit etmek için mikro sertlik ölçümleri gerçekleştirilirken, aşınma dayanımı ve sürtünme özelliklerini incelemek için ise lineer (reciprocating) aşınma testi gerçekleştirilmiştir. Akımsız kaplama yöntemi ile elde edilen çoklu alaşım kaplamaların karakterizasyon işlemleri sonrası sertlik değerlerinin 525 HV’den 645 HV’ye kadar arttığı görülmüştür. Sürtünme katsayısı ise 40 g/L sodyum tungsten içeren kaplamalarda 0,45 µ değerindeyken, 60 g/L’de bu değer 0,15 µ’a kadar düşmüştür. Ayrıca, aşınma oranı değerleri karşılaştırıldığında ise aşınma dayanımında ise yaklaşık 1.25 katlık bir artış söz konusu olmuştur.

Supporting Institution

Sakarya Uygulamalı Bilimler Üniversitesi Bilimsel Araştırma Projeleri

Project Number

2021-01-05-052

Thanks

Yapılan bu çalışmanın maddi açıdan desteklenmesine olanak sağlayan Sakarya Uygulamalı Bilimler Üniversitesi Bilimsel Araştırma Projeleri (BAP) Komisyon Başkanlığına (Proje No: 2021-01-05-052) teşekkür ederiz.

References

  • Balaraju, J. N., Kalavati, & Rajam, K. S. (2009). Surface morphology and structure of electroless ternary NiWP deposits with various W and P contents. Journal of Alloys and Compounds, 486(1–2), 468–473. https://doi.org/10.1016/J.JALLCOM.2009.06.173
  • Balaraju, J. N., Kalavati, & Rajam, K. S. (2010). Electroless ternary Ni-W-P alloys containing micron size Al2O3 particles. Surface and Coatings Technology, 205(2), 575–581. https://doi.org/10.1016/j.surfcoat.2010.07.047
  • Balaraju J N, Kalavati N T, M. et al. (2012). ,. Surface and Coatings Technology[J], 206: 2682.
  • Brenner, A., & Riddell, G. E. (1998). Nickel Plating on Steel by Chemical Reduction. Plating and Surface Finishing, 85(8), 54–56. https://doi.org/10.6028/jres.037.019
  • Chen, K., Liu, C., Whalley, D. C., Hutt, D. A., Li, J. F., & Mannan, S. H. (2006). Electroless Ni-W-P alloys as barrier coatings for liquid solder interconnects. ESTC 2006 - 1st Electronics Systemintegration Technology Conference, 1, 421–427. https://doi.org/10.1109/ESTC.2006.280037
  • Chen, X. M., Li, G. Y., & Lian, J. S. (2008). Deposition of electroless Ni-P/Ni-W-P duplex coatings on AZ91D magnesium alloy. Transactions of Nonferrous Metals Society of China (English Edition), 18(SPEC. ISSUE 1). https://doi.org/10.1016/s1003-6326(10)60225-7
  • Cheng, Y. H., Zou, Y., Cheng, L., & Liu, W. (2008). Effect of the microstructure on the anti-fouling property of the electroless Ni-P coating. Materials Letters, 62(27), 4283–4285. https://doi.org/10.1016/J.MATLET.2008.07.002
  • Court, S. W., Barker, B. D., & Walsh, F. C. (2000). Electrochemical measurements of electroless nickel coatings on zincated aluminium substrates. Transactions of the Institute of Metal Finishing, 78(4), 157–162. https://doi.org/10.1080/00202967.2000.11871330
  • F. Pearlstein, R. F. W. R. W. (1963). F. Pearlstein, R.F. Weightmanand R. Wick: Metal Finish Vol.61 (1963), p.77. Metal Finish, Vol.61, 77.
  • Keong, K. G., Sha, W., & Malinov, S. (2004). Artificial neural network modelling of crystallization temperatures of the Ni-P based amorphous alloys. Materials Science & Engineering A, 1–2(365), 212–218. https://doi.org/10.1016/J.MSEA.2003.09.030
  • Liu, H., Yao, H. L., Thompson, G. E., Liu, Z., & Harrison, G. (2015). Correlation between structure and properties of annealed electroless Ni-W-P coatings. Surface Engineering, 31(6), 412–419. https://doi.org/10.1179/1743294414Y.0000000422
  • Liu, L., Chen, Z., Zhou, Z., Chen, G., Wu, F., & Liu, C. (2017). Diffusion barrier property of electroless Ni-W-P coating in high temperature Zn-5Al/Cu solder interconnects. Journal of Alloys and Compounds, 722, 746–752. https://doi.org/10.1016/J.JALLCOM.2017.06.122
  • Mahmood, H., Harun, N., Suryanto, & Hilmy, I. (2015). Physical Properties of Electroless Nickel-Tungsten Coating on Mild Steels Obtained from Acetic Bath. Advanced Materials Research, 1115, 230–233. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMR.1115.230
  • Parker, K. (1981). Plating and Surface Finishing.
  • Refaat Gooda, S., Ramadan Mohammed Khalifa, O., Kassab Abd El-Aziz, A., & Hassan Marii, A. (2021). Structure and Corrosion Behavior of Nano-Crystalline Ni-P Alloy Containing Tungsten. American Journal of Physical Chemistry, 10(1), 1. https://doi.org/10.11648/J.AJPC.20211001.11
  • S.S. Tulsi. (1986). 64 (2) (1986) 73. In Trans. Inst. Metal Finish. (p. 64 (2) 73.).
  • Sudagar, J., Lian, J., & Sha, W. (2013). Electroless nickel, alloy, composite and nano coatings – A critical review. Journal of Alloys and Compounds, 571, 183–204. https://doi.org/10.1016/J.JALLCOM.2013.03.107
  • Takács, D., Sziráki, L., Török, T. I., Sólyom, J., Gácsi, Z., & Gál-Solymos, K. (2007). Effects of pre-treatments on the corrosion properties of electroless Ni-P layers deposited on AlMg2 alloy. Surface and Coatings Technology, 201(8), 4526–4535. https://doi.org/10.1016/j.surfcoat.2006.09.045
  • Talal, A., Abdullah, A., & Abdullah, A. M. (2009). Effect of accelerators and stabilisers on crystallinity of binary and ternary electroless nickel alloys. International Journal of Nano and Biomaterials, 2(1–5), 42–51. https://doi.org/10.1504/IJNBM.2009.027696
  • Tian, S. S., Sun, W. C., Liu, Y. W., Jia, Y. P., & Xiao, Y. (2021). Effect of Na2WO4concentration on the microstructure and corrosion behavior of Ni-W-P ternary alloy coatings. Materials Research, 24(4). https://doi.org/10.1590/1980-5373-MR-2020-0580

The Effect of Sodium Tungsten Content on Hardness and Wear Properties of Ni-W-P Multiple Alloys Produced by Electroless Coating Method

Year 2022, , 299 - 304, 31.03.2022
https://doi.org/10.31590/ejosat.1081743

Abstract

Electroless Nickel-based coatings are frequently used in many production areas such as automotive, aerospace, defence, and chemistry to improve the surface properties of materials such as wear, hardness, and corrosion. Electroless coatings are known as Ni-P and Ni-B coatings in many industries. This widespread use in many industries makes the production and research of multiple alloys and composites popular in the surface engineering field. On the other hand, aluminium has become one of the most used materials in the industry after iron due to its affordable cost, excellent thermal conductivity, high strength/weight rate properties, and being a recyclable material. In addition to these good properties of aluminium alloys, their low wear resistance and low hardness limit some usage areas in the industry. This study produced Ni-W-P coatings by adding different amounts of sodium tungsten contents to the Ni-P coating bath by chemical reduction method on the aluminium substrate. In the study, the effect of the tungsten ratio on the microstructure of the coating, coating thickness, hardness, and wear properties were investigated. For this purpose, Nickel-based multi-alloy coatings containing 40, 60, 80 g/L sodium tungsten were reduced to the aluminium substrate surface by using a basic hypophosphite bath to improve the surface properties of aluminium alloys. The optimum sodium tungsten ratio was determined at the end of the characterizations. Field Emission Scanning Electron Microscopy (FE-SEM) was used to examine the microstructure images of the produced coatings, and X-ray diffraction (XRD) analysis was performed to determine the phase structures. While microhardness measurements were carried out to determine the hardness of the produced coatings, a linear (reciprocating) wear test was carried out to examine the wear and friction properties. It was observed that the hardness values of the multi-alloy coatings obtained by the electroless coating method increased from 525 HV to 645 HV after the characterization processes. While the coefficient of friction was 0.45 µ in coatings containing 40 g/L sodium tungsten, this value decreased to 0.15 µ at 60 g/L. In addition, when the wear rate values were compared, there was an increase of approximately 1.25 times in the wear resistance.

Project Number

2021-01-05-052

References

  • Balaraju, J. N., Kalavati, & Rajam, K. S. (2009). Surface morphology and structure of electroless ternary NiWP deposits with various W and P contents. Journal of Alloys and Compounds, 486(1–2), 468–473. https://doi.org/10.1016/J.JALLCOM.2009.06.173
  • Balaraju, J. N., Kalavati, & Rajam, K. S. (2010). Electroless ternary Ni-W-P alloys containing micron size Al2O3 particles. Surface and Coatings Technology, 205(2), 575–581. https://doi.org/10.1016/j.surfcoat.2010.07.047
  • Balaraju J N, Kalavati N T, M. et al. (2012). ,. Surface and Coatings Technology[J], 206: 2682.
  • Brenner, A., & Riddell, G. E. (1998). Nickel Plating on Steel by Chemical Reduction. Plating and Surface Finishing, 85(8), 54–56. https://doi.org/10.6028/jres.037.019
  • Chen, K., Liu, C., Whalley, D. C., Hutt, D. A., Li, J. F., & Mannan, S. H. (2006). Electroless Ni-W-P alloys as barrier coatings for liquid solder interconnects. ESTC 2006 - 1st Electronics Systemintegration Technology Conference, 1, 421–427. https://doi.org/10.1109/ESTC.2006.280037
  • Chen, X. M., Li, G. Y., & Lian, J. S. (2008). Deposition of electroless Ni-P/Ni-W-P duplex coatings on AZ91D magnesium alloy. Transactions of Nonferrous Metals Society of China (English Edition), 18(SPEC. ISSUE 1). https://doi.org/10.1016/s1003-6326(10)60225-7
  • Cheng, Y. H., Zou, Y., Cheng, L., & Liu, W. (2008). Effect of the microstructure on the anti-fouling property of the electroless Ni-P coating. Materials Letters, 62(27), 4283–4285. https://doi.org/10.1016/J.MATLET.2008.07.002
  • Court, S. W., Barker, B. D., & Walsh, F. C. (2000). Electrochemical measurements of electroless nickel coatings on zincated aluminium substrates. Transactions of the Institute of Metal Finishing, 78(4), 157–162. https://doi.org/10.1080/00202967.2000.11871330
  • F. Pearlstein, R. F. W. R. W. (1963). F. Pearlstein, R.F. Weightmanand R. Wick: Metal Finish Vol.61 (1963), p.77. Metal Finish, Vol.61, 77.
  • Keong, K. G., Sha, W., & Malinov, S. (2004). Artificial neural network modelling of crystallization temperatures of the Ni-P based amorphous alloys. Materials Science & Engineering A, 1–2(365), 212–218. https://doi.org/10.1016/J.MSEA.2003.09.030
  • Liu, H., Yao, H. L., Thompson, G. E., Liu, Z., & Harrison, G. (2015). Correlation between structure and properties of annealed electroless Ni-W-P coatings. Surface Engineering, 31(6), 412–419. https://doi.org/10.1179/1743294414Y.0000000422
  • Liu, L., Chen, Z., Zhou, Z., Chen, G., Wu, F., & Liu, C. (2017). Diffusion barrier property of electroless Ni-W-P coating in high temperature Zn-5Al/Cu solder interconnects. Journal of Alloys and Compounds, 722, 746–752. https://doi.org/10.1016/J.JALLCOM.2017.06.122
  • Mahmood, H., Harun, N., Suryanto, & Hilmy, I. (2015). Physical Properties of Electroless Nickel-Tungsten Coating on Mild Steels Obtained from Acetic Bath. Advanced Materials Research, 1115, 230–233. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMR.1115.230
  • Parker, K. (1981). Plating and Surface Finishing.
  • Refaat Gooda, S., Ramadan Mohammed Khalifa, O., Kassab Abd El-Aziz, A., & Hassan Marii, A. (2021). Structure and Corrosion Behavior of Nano-Crystalline Ni-P Alloy Containing Tungsten. American Journal of Physical Chemistry, 10(1), 1. https://doi.org/10.11648/J.AJPC.20211001.11
  • S.S. Tulsi. (1986). 64 (2) (1986) 73. In Trans. Inst. Metal Finish. (p. 64 (2) 73.).
  • Sudagar, J., Lian, J., & Sha, W. (2013). Electroless nickel, alloy, composite and nano coatings – A critical review. Journal of Alloys and Compounds, 571, 183–204. https://doi.org/10.1016/J.JALLCOM.2013.03.107
  • Takács, D., Sziráki, L., Török, T. I., Sólyom, J., Gácsi, Z., & Gál-Solymos, K. (2007). Effects of pre-treatments on the corrosion properties of electroless Ni-P layers deposited on AlMg2 alloy. Surface and Coatings Technology, 201(8), 4526–4535. https://doi.org/10.1016/j.surfcoat.2006.09.045
  • Talal, A., Abdullah, A., & Abdullah, A. M. (2009). Effect of accelerators and stabilisers on crystallinity of binary and ternary electroless nickel alloys. International Journal of Nano and Biomaterials, 2(1–5), 42–51. https://doi.org/10.1504/IJNBM.2009.027696
  • Tian, S. S., Sun, W. C., Liu, Y. W., Jia, Y. P., & Xiao, Y. (2021). Effect of Na2WO4concentration on the microstructure and corrosion behavior of Ni-W-P ternary alloy coatings. Materials Research, 24(4). https://doi.org/10.1590/1980-5373-MR-2020-0580
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

İbrahim Usta 0000-0001-7557-9617

Harun Gül 0000-0002-4589-3506

Project Number 2021-01-05-052
Publication Date March 31, 2022
Published in Issue Year 2022

Cite

APA Usta, İ., & Gül, H. (2022). Akımsız Kaplama Yöntemi ile Üretilen Ni-W-P Çoklu Alaşımların Sertlik ve Aşınma Özelliklerine Sodyum Tungsten İçeriğinin Etkisi. Avrupa Bilim Ve Teknoloji Dergisi(34), 299-304. https://doi.org/10.31590/ejosat.1081743