Research Article
BibTex RIS Cite

Çift Beslemeli Endüksiyon Jeneratör Tabanlı Rüzgar Türbini Mevcut Döngü Davranışının Dinamik Analizi

Year 2022, , 415 - 420, 31.03.2022
https://doi.org/10.31590/ejosat.1082326

Abstract

Son zamanlarda, çift beslemeli endüksiyon makinesi, rüzgar üretim sistemlerinde yaygın olarak kullanılmaktadır. Çift beslemeli endüksiyon jeneratörü (ÇBIJ), rüzgar enerjisi sisteminin diğer türlerine kıyasla yaygın olarak bilinen bir makine olmuştur. Bu makale, rüzgar türbini (WT), ÇBIJ, rotor tarafı dönüştürücü (RTD), güç elektroniği bileşenleri ve dinamik durumu araştırmak için kullanılan şebeke tarafı dönüştürücü (ŞTD) içeren ayrıntılı bir model sunmaktadır hemde ÇBIJ tabanlı rüzgar türbininin dinamik performansını araştırmak için kullanılır. Tüm sistemi tasarlamak için vektör kontrol yaklaşımı uygulanmıştır. Makineleri kontrol etmek için farklı kontrol stratejileri vardır. Ancak bu yazıda, dolaylı hız kontrol stratejisi uygulanmış ve ÇBIJ tabanlı rüzgar türbinindeki akım döngülerinin dinamik özellikleri analiz edilmiştir. Bu nedenle, akım döngülerinin çok doğru olduğu ve gerçek akım döngülerinin teorik olana oldukça uyduğu fark edilebilir. Tüm sistem MATLAB/Simulink yazılımı ile doğrulanmış ve detaylı sonuçlar tartışılmıştır.

References

  • Instruments, T. (1997). Clarke & park transforms on the tms320c2xx. Application Report BPRA, 48.
  • Ahmed, H. M., Bentaallah, A., Djeriri, Y., & Mahmoudi, A. (2020). Comparative study between pi and fuzzy pi controllers for DFIG integrated in variable speed wind turbine. Int J Energ, 4(2), 8.
  • Benkahla, M., Taleb, R., & Boudjema, Z. (2016). Comparative study of robust control strategies for a DFIG-based wind turbine. International Journal of Advanced Computer Science and Applications, 7(2), 455-462.
  • Haseeb, I., Basit, A., Khan, R., & Asif, M. (2019). Designing variable speed small hydro turbine with doubly fed induction generator (DFIG). International Journal of Renewable Energy Sources, 4, 1-10.
  • Ibrahim, A. (2009). Vector control of current regulated inverter connected to grid for wind energy applications. International Journal of Renewable Energy Technology, 1(1), 17-28.
  • Michas, M. (2018). Control of turbine-based energy conversion systems [Doctoral dissertation, Cardiff University].
  • Yang, B., Jiang, L., Wang, L., Yao, W., & Wu, Q. H. (2016). Nonlinear maximum power point tracking control and modal analysis of DFIG based wind turbine. International Journal of Electrical Power & Energy Systems, 74, 429-436.
  • Akhmatov, V. (2002). Variable-speed wind turbines with doubly-fed induction generators: Part i: Modelling in dynamic simulation tools. Wind engineering, 26(2), 85-108.
  • Abu-Rub, H., Malinowski, M., & Al-Haddad, K. (2014). Power electronics for renewable energy systems, transportation and industrial applications. John Wiley & Sons.
  • Yaichi, I., Semmah, A., & Wira, P. (2019). European Journal of Electrical Engineering. European Journal of Electrical Engineering, 21(5), 457-464.
  • Lamnadi, M., Trihi, M., Bossoufi, B., & Boulezhar, A. (2016). Modeling and control of a doubly-fed induction generator for wind turbine-generator systems. Int. J. Power Electron. Drive Syst., 7(3), 982–995.
  • Tuka, M. B. (2020). DC Link Voltage and Power Flow Control of Doubly Fed Induction Generator in Wind Power System. 2020 IEEE PES/IAS PowerAfrica, 1-5.
  • Noussi, K., Abouloifa, A., Katir, H., & Lachkar, I. (2019). Modeling and control of a wind turbine based on a doubly fed induction generator. 4th World Conference on Complex Systems (WCCS-2019), 1-5.
  • Abad, G., Lopez, J., Rodriguez, M., Marroyo, L., & Iwanski, G. (2011). Doubly fed induction machine: modeling and control for wind energy generation. John Wiley & Sons.
  • Nadour, M., Essadki, A., & Nasser, T. (2017). Comparative analysis between PI & backstepping control strategies of DFIG driven by wind turbine. International Journal of Renewable Energy Research, 7(3), 1307-1316.

Dynamic Analysis of Current Loops Behavior in a Wind Turbine Based Doubly-fed Induction Generator

Year 2022, , 415 - 420, 31.03.2022
https://doi.org/10.31590/ejosat.1082326

Abstract

Recently, the doubly-fed induction machine is commonly utilized in wind generation system. A doubly-fed induction generator (DFIG) has been an extensively known machine compared to other types of the wind energy system. This paper presents, a detailed model that comprises a wind turbine (WT), DFIG, rotor side converter (RSC), power electronic components, and grid side converter (GSC) which are used to investigate the dynamic performance of a wind turbine based on DFIG. Vector control approach has been implemented to design the whole system. There are different control strategies for controlling the machines. However, in this paper, indirect speed control strategy has been performed and the dynamic characteristics of current loops in a wind turbine based on DFIG are analyzed. The entire system has been confirmed by MATLAB/Simulink software and detailed results are discussed.

References

  • Instruments, T. (1997). Clarke & park transforms on the tms320c2xx. Application Report BPRA, 48.
  • Ahmed, H. M., Bentaallah, A., Djeriri, Y., & Mahmoudi, A. (2020). Comparative study between pi and fuzzy pi controllers for DFIG integrated in variable speed wind turbine. Int J Energ, 4(2), 8.
  • Benkahla, M., Taleb, R., & Boudjema, Z. (2016). Comparative study of robust control strategies for a DFIG-based wind turbine. International Journal of Advanced Computer Science and Applications, 7(2), 455-462.
  • Haseeb, I., Basit, A., Khan, R., & Asif, M. (2019). Designing variable speed small hydro turbine with doubly fed induction generator (DFIG). International Journal of Renewable Energy Sources, 4, 1-10.
  • Ibrahim, A. (2009). Vector control of current regulated inverter connected to grid for wind energy applications. International Journal of Renewable Energy Technology, 1(1), 17-28.
  • Michas, M. (2018). Control of turbine-based energy conversion systems [Doctoral dissertation, Cardiff University].
  • Yang, B., Jiang, L., Wang, L., Yao, W., & Wu, Q. H. (2016). Nonlinear maximum power point tracking control and modal analysis of DFIG based wind turbine. International Journal of Electrical Power & Energy Systems, 74, 429-436.
  • Akhmatov, V. (2002). Variable-speed wind turbines with doubly-fed induction generators: Part i: Modelling in dynamic simulation tools. Wind engineering, 26(2), 85-108.
  • Abu-Rub, H., Malinowski, M., & Al-Haddad, K. (2014). Power electronics for renewable energy systems, transportation and industrial applications. John Wiley & Sons.
  • Yaichi, I., Semmah, A., & Wira, P. (2019). European Journal of Electrical Engineering. European Journal of Electrical Engineering, 21(5), 457-464.
  • Lamnadi, M., Trihi, M., Bossoufi, B., & Boulezhar, A. (2016). Modeling and control of a doubly-fed induction generator for wind turbine-generator systems. Int. J. Power Electron. Drive Syst., 7(3), 982–995.
  • Tuka, M. B. (2020). DC Link Voltage and Power Flow Control of Doubly Fed Induction Generator in Wind Power System. 2020 IEEE PES/IAS PowerAfrica, 1-5.
  • Noussi, K., Abouloifa, A., Katir, H., & Lachkar, I. (2019). Modeling and control of a wind turbine based on a doubly fed induction generator. 4th World Conference on Complex Systems (WCCS-2019), 1-5.
  • Abad, G., Lopez, J., Rodriguez, M., Marroyo, L., & Iwanski, G. (2011). Doubly fed induction machine: modeling and control for wind energy generation. John Wiley & Sons.
  • Nadour, M., Essadki, A., & Nasser, T. (2017). Comparative analysis between PI & backstepping control strategies of DFIG driven by wind turbine. International Journal of Renewable Energy Research, 7(3), 1307-1316.
There are 15 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Samatar Abdi Yonis 0000-0002-8926-5229

Ziyodulla Yusupov 0000-0002-0798-2903

Publication Date March 31, 2022
Published in Issue Year 2022

Cite

APA Abdi Yonis, S., & Yusupov, Z. (2022). Dynamic Analysis of Current Loops Behavior in a Wind Turbine Based Doubly-fed Induction Generator. Avrupa Bilim Ve Teknoloji Dergisi(34), 415-420. https://doi.org/10.31590/ejosat.1082326