Investigation of Morphology, Size Distribution and Surface Area of ZnO Crystallization Using Taguchi Experimental Design
Year 2022,
, 367 - 373, 31.03.2022
Muhammed Bora Akın
,
Ömer Faruk Dilmaç
,
Barış Şimşek
Abstract
Length, width and specific surface area are among the important criteria representing ZnO crystallization. The average width, average length and surface area of the synthesized ZnO crystals are important because they directly change the application area in which the material will be used. In this study, the factors affecting these criteria were determined as the amount of poly(sodium 4-styrenesulfonate), ultrasonication power, reactant concentration and reaction temperature. The effects of the factors on the selected criteria are analyzed and determined using the Taguchi experimental design method and main effect analysis. The results showed that if the ZnO crystals to be produced are to be used as catalysts, a lower PSSS concentration should be preferred for the synthesis of these crystals, which are smaller in size and have a larger surface area. Another result is; It is seen that the amount of additive and ultrasonication are the two most effective parameters on the average width, average length and specific surface area properties of the synthesized ZnO crystals
Supporting Institution
Çankırı Karatekin University, Project Administration Unit
Project Number
MF060416B28
Thanks
The authors are grateful to the Çankırı Karatekin University, Project Administration Unit for their financial support of this research (Project number: MF060416B28).
References
- Akin, B. and Akyüz, T. (2020). Antibacterial effect of ZnO crystals on foodborne pathogens: an optimization study, Journal of Microbiology, Biotechnology and Food Sciences, 10:(3), 484-489.
- Akin, B. and Oner, M. (2012). Aqueous pathways for formation of zinc oxide particles in the presence of carboxymethyl inulin. Res Chem. Intermed., 38, 1511–1525.
- Akin, M.B. and Oner, M. (2013). Photodegradation of methylene blue with sphere-like ZnO particles prepared via aqueous solution, Ceramics International, 39, 9759–9762.
- Bao, Y. Gao, L. Feng, C. Ma, J. and Lyu, S. (2021). Systematically controlled synthesis of shape-selective ZnO superstructures via sonochemical process, Materials Science and Engineering: B, 263. 114887.
- Goswami, M., Adhikary, N. C. and S. Bhattacharjee, (2018). Effect of annealing temperatures on the structural and optical properties of zinc oxide nanoparticles prepared by chemical precipitation method, Optik, 158, 1006-1015.
- Intaphong, P. Phuruangrat, A. Yeebu, H. Akhbari, K. Sakhon, T. Thongtem, S. and Thongtem, T. (2021). Sonochemical Synthesis of Pd Nanoparticle/ZnO Flower Photocatalyst Used for Methylene Blue and Methyl Orange Degradation under UV Radiation, Russian Journal of Inorganic Chemistry, 66(14), 2123–2133.
- Jay Chithra, M., Sathya, M. and Pushpanathan, K. (2015). Effect of pH on Crystal Size and Photoluminescence Property of ZnO Nanoparticles Prepared by Chemical Precipitation Method, Acta Metall. Sin. (Engl. Lett.), 28, 394–404.
- Palms, D. Norwig, J. and Wegner, G. (2007). Electrochemically Induced Growth of Zinc Oxide, Chem. Phys. Chem., 8, 2260-2264.
Pholnak, P. Sirisathitkul, C. Danworaphong, S. and Harding, D. (2013). Sonochemical Synthesis of Zinc Oxide Nanoparticles Using an Ultrasonic Homogenizer, Ferroelectrics, 455, 15-20.
- Sahai, A. and Goswami, N., (2014). Structural and vibrational properties of ZnO nanoparticles synthesized by the chemical precipitation method, Physica E: Low-dimensional Systems and Nanostructures, 58, 130-137.
- Satdeve, N.S. Ugwekar, R.P. Bhanvase, B.A. (2019). Ultrasound assisted preparation and characterization of Ag supported on ZnO nanoparticles for visible light degradation of methylene blue dye, Journal of Molecular Liquids, 291, 111313.
- Simsek, B. Ic, Y. T. and Simsek, E. H. (2013). A TOPSIS-based Taguchi optimization to determine optimal mixture proportions of the high strength self-compacting concrete, Chemometrics and Intelligent Laboratory Systems, 125, 18-32.
- Sun, L., Zhao, D., Song, Z., Shan, C., Zhang, Z., Li, B. and Shen, D. (2011). Gold nanoparticles modified ZnO nanorods with improved photocatalytic activity, Journal of Colloid and Interface Science, 363(1), 175-181.
- Türemen, M., Demir, A. and Gokce, Y. (2021). The synthesis and application of chitosan coated ZnO nanorods for multifunctional cotton fabrics, Materials Chemistry and Physics, 268, 124736.
- Yang, Y. and Kim, K. (2021). Simultaneous acquisition of current and lateral force signals during AFM for characterising the piezoelectric and triboelectric effects of ZnO nanorods, Sci. Rep., 11, 2904.
- Yu, J. Li, C. and Liu, S. (2008). Effect of PSS on morphology and optical properties of ZnO, Journal of Colloid and Interface Science, 326(2), 433-438.
ZnO Kristalizasyonunun Morfolojisi, Boyut Dağılımı ve Yüzey Alanının Taguchi Deneysel Tasarımı Kullanılarak İncelenmesi
Year 2022,
, 367 - 373, 31.03.2022
Muhammed Bora Akın
,
Ömer Faruk Dilmaç
,
Barış Şimşek
Abstract
Uzunluk, genişlik ve spesifik yüzey alanı ZnO kristalizasyonunu temsil eden önemli kriterler arasında bulunur. Sentezlenen ZnO kristallerinin ortalama genişliği, ortalama uzunluğu ve yüzey alanı malzemenin kullanılacağı uygulama alanını direkt olarak değiştirdiği için önemlidir. Bu çalışmada bu kriterleri etkileyen faktörler olarak poli(sodyum 4-stirensülfonat) (PSSS) miktarı, ultrasonikasyon gücü, reaktan konsantrasyonu ve reaksiyon sıcaklığı belirlenmiştir. Faktörlerin seçilen kriterler üzerindeki etkileri, Taguchi deney tasarımı yöntemi ve ana etki analizi kullanılarak analiz edilmekte ve tespit edilmektedir. Sonuçlar, Üretilecek ZnO kristallerinin katalizörler olarak kullanımı söz konusu ise, boyut olarak daha küçük ve yüzey alanı daha büyük olan bu kristallerin sentezi için daha düşük PSSS konsantrasyonunun tercih edilmesi gerektiğini göstermiştir. Bir diğer sonuç ise; sentezlenen ZnO kristallerinin ortalama genişlik, ortalama uzunluk ve spesifik yüzey alanı özellikleri üzerinde katkı miktarı ve ultrasonikasyonun en etkili iki parametre olarak karşımıza çıktığı görülmektedir
Project Number
MF060416B28
References
- Akin, B. and Akyüz, T. (2020). Antibacterial effect of ZnO crystals on foodborne pathogens: an optimization study, Journal of Microbiology, Biotechnology and Food Sciences, 10:(3), 484-489.
- Akin, B. and Oner, M. (2012). Aqueous pathways for formation of zinc oxide particles in the presence of carboxymethyl inulin. Res Chem. Intermed., 38, 1511–1525.
- Akin, M.B. and Oner, M. (2013). Photodegradation of methylene blue with sphere-like ZnO particles prepared via aqueous solution, Ceramics International, 39, 9759–9762.
- Bao, Y. Gao, L. Feng, C. Ma, J. and Lyu, S. (2021). Systematically controlled synthesis of shape-selective ZnO superstructures via sonochemical process, Materials Science and Engineering: B, 263. 114887.
- Goswami, M., Adhikary, N. C. and S. Bhattacharjee, (2018). Effect of annealing temperatures on the structural and optical properties of zinc oxide nanoparticles prepared by chemical precipitation method, Optik, 158, 1006-1015.
- Intaphong, P. Phuruangrat, A. Yeebu, H. Akhbari, K. Sakhon, T. Thongtem, S. and Thongtem, T. (2021). Sonochemical Synthesis of Pd Nanoparticle/ZnO Flower Photocatalyst Used for Methylene Blue and Methyl Orange Degradation under UV Radiation, Russian Journal of Inorganic Chemistry, 66(14), 2123–2133.
- Jay Chithra, M., Sathya, M. and Pushpanathan, K. (2015). Effect of pH on Crystal Size and Photoluminescence Property of ZnO Nanoparticles Prepared by Chemical Precipitation Method, Acta Metall. Sin. (Engl. Lett.), 28, 394–404.
- Palms, D. Norwig, J. and Wegner, G. (2007). Electrochemically Induced Growth of Zinc Oxide, Chem. Phys. Chem., 8, 2260-2264.
Pholnak, P. Sirisathitkul, C. Danworaphong, S. and Harding, D. (2013). Sonochemical Synthesis of Zinc Oxide Nanoparticles Using an Ultrasonic Homogenizer, Ferroelectrics, 455, 15-20.
- Sahai, A. and Goswami, N., (2014). Structural and vibrational properties of ZnO nanoparticles synthesized by the chemical precipitation method, Physica E: Low-dimensional Systems and Nanostructures, 58, 130-137.
- Satdeve, N.S. Ugwekar, R.P. Bhanvase, B.A. (2019). Ultrasound assisted preparation and characterization of Ag supported on ZnO nanoparticles for visible light degradation of methylene blue dye, Journal of Molecular Liquids, 291, 111313.
- Simsek, B. Ic, Y. T. and Simsek, E. H. (2013). A TOPSIS-based Taguchi optimization to determine optimal mixture proportions of the high strength self-compacting concrete, Chemometrics and Intelligent Laboratory Systems, 125, 18-32.
- Sun, L., Zhao, D., Song, Z., Shan, C., Zhang, Z., Li, B. and Shen, D. (2011). Gold nanoparticles modified ZnO nanorods with improved photocatalytic activity, Journal of Colloid and Interface Science, 363(1), 175-181.
- Türemen, M., Demir, A. and Gokce, Y. (2021). The synthesis and application of chitosan coated ZnO nanorods for multifunctional cotton fabrics, Materials Chemistry and Physics, 268, 124736.
- Yang, Y. and Kim, K. (2021). Simultaneous acquisition of current and lateral force signals during AFM for characterising the piezoelectric and triboelectric effects of ZnO nanorods, Sci. Rep., 11, 2904.
- Yu, J. Li, C. and Liu, S. (2008). Effect of PSS on morphology and optical properties of ZnO, Journal of Colloid and Interface Science, 326(2), 433-438.