Research Article
BibTex RIS Cite

Kömür Üretim Tesisi Atıksularının İleri Arıtım Prosesleri ile Arıtılarak Tekrar Kullanılabilirliğinin Araştırılması

Year 2022, , 463 - 468, 31.03.2022
https://doi.org/10.31590/ejosat.1082896

Abstract

Yeraltı madenciliği ile kömür üretimi gerçekleştirilen tesislerde üretim sırasında atıksu oluşumu kaçınılmazdır. Oluşan atıksuyun deşarj edilmesinden veya proses suyu olarak kullanılmasından önce uygun arıtma yöntemleri ile arıtılması gerekmektedir. Bu çalışma kapsamında yeraltı madenciliği ile kömür üretimi gerçekleştiren bir tesiste oluşan atıksuların fiziko-kimyasal ve membran prosesler ile arıtılarak kömür zenginleştirme tesisinde tekrar kullanılabilirliği incelenmiştir. Bu kapsamda atıksudan alınan numunelerde bulanıklık, ph, KOI ve AKM parametreleri incelenmiştir. Tesisin bulanıklık gideriminde toplam verimi %99,97, KOI giderim verimi %95,16, AKM giderim verimi ise %99,72 olarak hesaplanmıştır. İnceleme sonuçları arıtılan atıksuyun kömür zenginleştirme tesisinde tekrar kullanılabileceğini bununla birlikte çevresel ve ekonomik kazançlar sağlanabileceğini göstermiştir.

References

  • Singh H., Kumar S., Mohapatra S. K., Prasad S. B., Singh J. (2021). Slurryability and flowability of coal water slurry: effect of particle size distribution. Journal of Cleaner Production, 323.
  • Bian Z., Inyang H., Daniels J. L., Otto F., Struthers S. (2010). Environmental issues from coal mining and their solutions. Mining Science and Technology, 20(2), 215–223.
  • Li C., Wang X., Yang T., Deng W. (2021). Enhancement of fluidity and slurry-phase hydrogenation reactivity of coal-oil slurry by preheating treatment. Fuel, 290.
  • Greenfield C., Alverez C. F. (2021). International Energy Agency (IEA). Coal-Fired Power.
  • British Petroleum. (2021). Statistical review of world energy.
  • TMMOB Elektrik Mühendisleri Odası (EMO). (2021). Türkiye elektrik istatistikleri.
  • Xie P., Liu J., Fu B., Newmaster T., Hower J. C. (2022). Resources from coal beneficiation waste: chemistry and petrology of the Ayrshire coal tailings ponds, Chandler, Indiana. Fuel, 313.
  • Çiftçi H., Işık S. (2016). İnce boyutlu lavvar tesisi atıklarının anyonik flokülantlar ile susuzlandırılmasında çeşitli parametrelerin etkisi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri,16, 391‐398. doi: 10.5578/fmbd.28089.
  • Arslan V., Kemal M. (2004). Kömür hazırlama ve Türkiye’deki uygulamalar. Türkiye 14. Kömür Kongresi Bildiriler Kitabı.
  • Letcher T. M. (2020). Future Energy. South Africa, University of Kwazulu.
  • Özgen S., Arsoy Z., Ersoy B., Çiftçi H. (2019). Coal recovery from coal washing plant tailings with Knelson concentrator. International journal of coal preparation and utilization 1-11.
  • Robl T., Oberlink A., Jones R. (2017). Coal combustion products (CCP’s) characteristics, utilization and beneficiation.
  • Chen B., Yang S., Cao Q., Qian Y. (2020). Life cycle economic assessment of coal chemical wastewater treatment facing the ‘Zero liquid discharge’ industrial water policies in China: Discharge or reuse? Energy Policy, 137.
  • Gu A., Sun L. (2017). Actual influence cost estimation of water resources in coal mining and utilization in China. Energy Procedia, 142, 2454-2460.
  • Zhang X., Dong Y., Zhao J., Gong B., Lin J. (2021). Combined treatments of underground coal slurry: laboratory testing and field application. Water, 13.
  • Sivakumar M., Ramezanianpour M., O’Halloran G. (2013). Mine water treatment using a vacuum membrane distillation system. APCBEE Procedia, 5, 157-162.
  • Topaloğlu A. K., İnce M., Kajama M. N. (2019). The use of nf and ro membrane system for reclamation and recycling of wastewaters generated from a hard coal mining. Nigerian Journal of Technology, 38(4). doi: 10.4314/njt.v38i4.30.
  • Galloux J., Chekli L., Phuntsho S., Tijing L. D., Jeong S., Zhao Y. X., Gao B. Y., Park S. H., Shon H. K. (2015). Coagulation performance and floc characteristics of polytitanium tetrachloride and titanium tetrachloride compared with ferric chloride for coal mining wastewater treatment. Seperation and Purification Technology, 152(25), 94-100.
  • Song H., Xu J., Fang J., Cao Z., Yang L., Li T. (2020). Potential for mine water disposal in coal seam goaf: ınvestigation of storage coefficients in the shendong mining area. Journal of Cleaner Production, 244.
  • Jilang C., Zhao D., Chen X., Zheng L., Li C., Ren M. (2022). Distribution, source and ecological risk assessment of polycyclic aromatic hydrocarbons in groundwater in a coal mining area, China. Ecological Indıcators, 136.
  • T.C. Kütahya Çevre ve Şehircilik İl Müdürlüğü (CSB). (2020). Kütahya ili 2019 yılı çevre durum raporu.
  • Mason T. J., Krogh M., Popovic G. C., Glamore W., Keith D. A. (2021). Persistent effects of underground longwall coal mining on freshwater wetland hydrology. Science of the Total Environment, 772.
  • Ghosh G. K., Sivakumar C. (2018). Application of underground microseismic monitoring for ground failure and secure longwall coal mining operation: A case study in an Indian mine. Journal of Applied Geophysics, 150, 21-39.
  • Sayıt A. P., Yazıcıgil H. (2018). Uzun ayak kömür madenciliğinin yeraltısuyu akım sistemine etkileri. 71. Türkiye Jeoloji Kurultayı.
  • Arya S., Spttile J., Novak T. (2018). Development of a flooded-bed scrubber for removing coal dust at a longwall mining section. Safety Science 110, 204.213.
  • Mien T. (2012). Mine waste water management and treatment in coal mines in Vietnam. Geosystem Engineering, 15(1), 66-70. doi: 10.1080/12269328.2012.674430.

Investigation of Reusability of Coal Production Facility Wastewater by Treating with Advanced Treatment Processes

Year 2022, , 463 - 468, 31.03.2022
https://doi.org/10.31590/ejosat.1082896

Abstract

Wastewater formation is inevitable during production in facilities where coal production is carried out with underground mining. Before the wastewater is discharged or used as process water, it must be treated with suitable treatment methods. In this study, the reusability of wastewater generated in a facility that produces coal by underground mining was investigated for the coal beneficiation facility by treating with physico-chemical and membrane processes. In this context, turbidity, pH, COD and SS parameters were investigated in the samples taken from wastewater. The total efficiency of the plant in turbidity removal was determined as 99.97%, the COD removal efficiency as 95.16%, and the AKM removal efficiency as 99.72%. The results of the examination showed that the treated wastewater can be reused in the coal beneficiation facility, besides, environmental and economic gains can be achieved.

References

  • Singh H., Kumar S., Mohapatra S. K., Prasad S. B., Singh J. (2021). Slurryability and flowability of coal water slurry: effect of particle size distribution. Journal of Cleaner Production, 323.
  • Bian Z., Inyang H., Daniels J. L., Otto F., Struthers S. (2010). Environmental issues from coal mining and their solutions. Mining Science and Technology, 20(2), 215–223.
  • Li C., Wang X., Yang T., Deng W. (2021). Enhancement of fluidity and slurry-phase hydrogenation reactivity of coal-oil slurry by preheating treatment. Fuel, 290.
  • Greenfield C., Alverez C. F. (2021). International Energy Agency (IEA). Coal-Fired Power.
  • British Petroleum. (2021). Statistical review of world energy.
  • TMMOB Elektrik Mühendisleri Odası (EMO). (2021). Türkiye elektrik istatistikleri.
  • Xie P., Liu J., Fu B., Newmaster T., Hower J. C. (2022). Resources from coal beneficiation waste: chemistry and petrology of the Ayrshire coal tailings ponds, Chandler, Indiana. Fuel, 313.
  • Çiftçi H., Işık S. (2016). İnce boyutlu lavvar tesisi atıklarının anyonik flokülantlar ile susuzlandırılmasında çeşitli parametrelerin etkisi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri,16, 391‐398. doi: 10.5578/fmbd.28089.
  • Arslan V., Kemal M. (2004). Kömür hazırlama ve Türkiye’deki uygulamalar. Türkiye 14. Kömür Kongresi Bildiriler Kitabı.
  • Letcher T. M. (2020). Future Energy. South Africa, University of Kwazulu.
  • Özgen S., Arsoy Z., Ersoy B., Çiftçi H. (2019). Coal recovery from coal washing plant tailings with Knelson concentrator. International journal of coal preparation and utilization 1-11.
  • Robl T., Oberlink A., Jones R. (2017). Coal combustion products (CCP’s) characteristics, utilization and beneficiation.
  • Chen B., Yang S., Cao Q., Qian Y. (2020). Life cycle economic assessment of coal chemical wastewater treatment facing the ‘Zero liquid discharge’ industrial water policies in China: Discharge or reuse? Energy Policy, 137.
  • Gu A., Sun L. (2017). Actual influence cost estimation of water resources in coal mining and utilization in China. Energy Procedia, 142, 2454-2460.
  • Zhang X., Dong Y., Zhao J., Gong B., Lin J. (2021). Combined treatments of underground coal slurry: laboratory testing and field application. Water, 13.
  • Sivakumar M., Ramezanianpour M., O’Halloran G. (2013). Mine water treatment using a vacuum membrane distillation system. APCBEE Procedia, 5, 157-162.
  • Topaloğlu A. K., İnce M., Kajama M. N. (2019). The use of nf and ro membrane system for reclamation and recycling of wastewaters generated from a hard coal mining. Nigerian Journal of Technology, 38(4). doi: 10.4314/njt.v38i4.30.
  • Galloux J., Chekli L., Phuntsho S., Tijing L. D., Jeong S., Zhao Y. X., Gao B. Y., Park S. H., Shon H. K. (2015). Coagulation performance and floc characteristics of polytitanium tetrachloride and titanium tetrachloride compared with ferric chloride for coal mining wastewater treatment. Seperation and Purification Technology, 152(25), 94-100.
  • Song H., Xu J., Fang J., Cao Z., Yang L., Li T. (2020). Potential for mine water disposal in coal seam goaf: ınvestigation of storage coefficients in the shendong mining area. Journal of Cleaner Production, 244.
  • Jilang C., Zhao D., Chen X., Zheng L., Li C., Ren M. (2022). Distribution, source and ecological risk assessment of polycyclic aromatic hydrocarbons in groundwater in a coal mining area, China. Ecological Indıcators, 136.
  • T.C. Kütahya Çevre ve Şehircilik İl Müdürlüğü (CSB). (2020). Kütahya ili 2019 yılı çevre durum raporu.
  • Mason T. J., Krogh M., Popovic G. C., Glamore W., Keith D. A. (2021). Persistent effects of underground longwall coal mining on freshwater wetland hydrology. Science of the Total Environment, 772.
  • Ghosh G. K., Sivakumar C. (2018). Application of underground microseismic monitoring for ground failure and secure longwall coal mining operation: A case study in an Indian mine. Journal of Applied Geophysics, 150, 21-39.
  • Sayıt A. P., Yazıcıgil H. (2018). Uzun ayak kömür madenciliğinin yeraltısuyu akım sistemine etkileri. 71. Türkiye Jeoloji Kurultayı.
  • Arya S., Spttile J., Novak T. (2018). Development of a flooded-bed scrubber for removing coal dust at a longwall mining section. Safety Science 110, 204.213.
  • Mien T. (2012). Mine waste water management and treatment in coal mines in Vietnam. Geosystem Engineering, 15(1), 66-70. doi: 10.1080/12269328.2012.674430.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Hatice Demirel 0000-0002-3713-1886

Gökhan Ekrem Üstün 0000-0002-7126-6792

Publication Date March 31, 2022
Published in Issue Year 2022

Cite

APA Demirel, H., & Üstün, G. E. (2022). Kömür Üretim Tesisi Atıksularının İleri Arıtım Prosesleri ile Arıtılarak Tekrar Kullanılabilirliğinin Araştırılması. Avrupa Bilim Ve Teknoloji Dergisi(34), 463-468. https://doi.org/10.31590/ejosat.1082896