Research Article
BibTex RIS Cite

High-Gain Rectangular Patch Microstrip Antenna for IEEE 802.11 b/g Applications

Year 2022, , 657 - 660, 31.03.2022
https://doi.org/10.31590/ejosat.1084138

Abstract

Increasing demand for microstrip patch antennas, especially in microwave applications, due to its compactness, ease of fabrication, low cost, etc. gives rise to the research studies on the related area. In this study, rectangular shaped microstrip patch antenna is designed and simulated for Bluetooth applications. The antenna consists of rectangular shaped patch that is loaded with rectangular slots with different lengths, FR-4 substrate with 1.6 mm thickness and ground with reduced length. The designed antenna is simulated using CST MWS software to investigate S11, gain, VSWR parameters. Microstrip line feeding technique with discrete port is used to feed the antenna. According to the results, lower and higher frequency bands of the antenna are 2.24 GHz – 2.62 GHz with 2.48 GHz center frequency (15.3% bandwidth) and 5.80 GHz – 5.99 GHz with 5.90 GHz center frequency (3.22% bandwidth), respectively. Gain values at 2.4 GHz, 2.5 GHz and 5.9 GHz frequencies can be given as 3.45 dBi, 3.58 dBi and 4.93 dBi, respectively. S11 values at 2.4 GHz, 2.5 GHz and 5.9 GHz frequency bands are -16.64 dB, -18.00 dB and -15.11 dB. VSWR values of the antenna for 2.4 GHz, 2.5 GHz and 5.9 GHz can be given as, 1.35, 1.29 and 1.43 respectively. As a result, the proposed antenna has high gain and wide low frequency band. It can be used for Bluetooth/ Wi-Fi applications and IEEE 802.11 b/g standards are also supported by the antenna.

Supporting Institution

TUBITAK

Project Number

1919B012102336

Thanks

This study has been carried out using the laboratory facilities of Izmir Katip Celebi University Smart Factory Systems Application and Research Center (AFSUAM). The study is supported by TUBITAK 2209-A University Students Research Projects Support Program within the scope of project numbered 1919B012102336.

References

  • Montero-de-Paz, J., Oprea, I., Rymanov, V., Babiel, S., García-Muñoz, L. E., Lisauskas, A., ...& Carpintero, G. (2013). Compact modules for wireless communication systems in the E-band (71–76 GHz). Journal of Infrared, Millimeter, and Terahertz Waves, 34(3), 251-266.
  • Özkaya, U., Yiğit, E., Seyfi, L., Öztürk, Ş., & Singh, D. (2021). Comparative regression analysis for estimating resonant frequency of c-like patch antennas. Mathematical Problems in Engineering, 2021.
  • Palandöken, M., Rymanov, V., Stöhr, A., & Tekin, T. (2012, August). Compact metamaterial-based bias tee design for 1.55 μm waveguide-photodiode based 71–76GHz wireless transmitter. In Progress in Electromagnetics Research Symposium, PIERS.
  • Palandöken, M., & Ucar, M. H. (2014). Compact metamaterial‐inspired band‐pass filter. Microwave and Optical Technology Letters, 56(12), 2903-2907.
  • Palandöken, M., & Sondas, A. (2014). Compact Metamaterial Based Bandstop Filter. Microwave Journal, 57(10).
  • Malik, P. K., Padmanaban, S., & Holm-Nielsen, J. B. (Eds.). (2021). Microstrip Antenna Design for Wireless Applications. CRC Press.
  • Drabowitch, S., Papiernik, A., Griffiths, H., Encinas, J., & Smith, B. L. (2010). Modern antennas. Springer Science & Business Media.
  • Fang, D. G. (2017). Antenna theory and microstrip antennas. CRC Press.
  • Palandöken, M. (2011). Artificial materials based microstrip antenna design. Microstrip antennas, 43-50.
  • Palandoken, M., Grede, A., & Henke, H. (2009). Broadband microstrip antenna with left-handed metamaterials. IEEE Transactions on Antennas and Propagation, 57(2), 331-338.
  • Shravan, G. S., Suhas, L. S., Kumar, N. H., Vinay, S., & Kumar, N. G. (2019, July). 2x2 Circular Patch Antenna Array at 2.4 GHz for WSN Applications: Design and Performance Analysis of Circular Antenna Array and Comparison over Rectangular Array. In 2019 International Conference on Communication and Electronics Systems (ICCES) (pp. 887-891). IEEE.
  • Palandöken, M. (2017). Dual broadband antenna with compact double ring radiators for IEEE 802.11 ac/b/g/n WLAN communication applications. Turkish Journal of Electrical Engineering & Computer Sciences, 25(2), 1326-1333.
  • Baytöre, C., Özgönül, M. C., Palandöken, M., Özbakış, B., & Kaya, A. (2015, May). Low cost dual band monopole antenna design and analysis for 802.11 b/g/n/ac standards. In 2015 23nd Signal Processing and Communications Applications Conference (SIU) (pp. 2070-2073). IEEE.
  • İsa, A. T. A. Ş., ABBASOV, T., & KURT, M. B. (2016). High gain array antenna design of wireless communication applications. European Journal of Technique (EJT), 6(2), 145-151.
  • KESKİN, S. E. B., & GÜLER, C. (2021). DESIGN OF CIRCULAR SLOTTED RECTANGULAR MICROSTRIP PATCH ANTENNA WITH DUAL-RESONANCE FOR WLAN/WIMAX APPLICATIONS. Mühendislik Bilimleri ve Tasarım Dergisi, 9(4), 1296-1301.
  • SONDAŞ, A. WLAN/WiMAX Uygulamaları için Geniş Bant Mikroşerit Dipol Anten Tasarımı. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 7(1), 788-794.
  • Başaran, S. C., & Erdemli, Y. E. (2008). Dual-band split-ring antenna design for WLAN applications. Turkish Journal Of Electrical Engineering & Computer Sciences, 16(1), 79-86.
  • Nayak, P. B., Endluri, R., Verma, S., & Kumar, P. (2021). A novel compact dual-band antenna design for wlan applications. arXiv preprint arXiv:2106.13232.
  • Armağan, O., & Kahriman, M. (2016). 2.45 GHZ, 3.7 GHZ VE 5.8 GHZ FREKANSLARDA ÇALIŞAN ÜÇ-BANT YAMA ANTEN TASARIMI. Mühendislik Bilimleri ve Tasarım Dergisi, 4(3), 189-193.
  • Geetharamani, G., & Aathmanesan, T. (2019). Design and Development of Novel Patch Antenna for 2.4 GHz WLAN Applications. ICTACT Journal on Communication Technology, 10(1), 1943-1946.
  • Uqaili, R. S., Uqaili, J. A., Zahra, S., Soomro, F. B., & Akbar, A. (2020). A Study on Dual-band Microstrip Rectangular Patch Antenna for Wi-Fi. Proceedings of Engineering and Technology Innovation, 16, 1-12.

IEEE 802.11 b/g Uygulamalarına Yönelik Yüksek Kazançlı Dikdörtgen Yama Mikroşerit Anten Tasarımı

Year 2022, , 657 - 660, 31.03.2022
https://doi.org/10.31590/ejosat.1084138

Abstract

Mikroşerit yama antenlerin kompakt olması, imalat kolaylığı, düşük maliyeti vb. gibi avantajları, bu antenlere olan talebin, özellikle mikrodalga uygulamalarında, artmasına dolayısıyla mikroşerit antenlere yönelik bilimsel araştırmalarda artışa sebep olmuştur. Bu çalışmada, Bluetooth uygulamaları için dikdörtgen yama mikroşerit anten tasarlanmış ve simüle edilmiştir. Anten, üzerinde farklı uzunluklarda dikdörtgen yarıklar kullanılmış dikdörtgen yama, 1,6 mm kalınlığında FR-4 alt taş ve dikdörtgen zeminden oluşmaktadır. Tasarlanan anten, S11, kazanç, VSWR parametrelerini incelemek için CST MWS yazılımı kullanılarak simüle edilmiştir. Anten, mikroşerit hat besleme tekniği kullanılarak beslenmiştir. Sonuçlara göre antenin düşük ve yüksek frekans bantları 2,48 GHz merkez frekansı ile 2,24 GHz – 2,62 GHz (%15,3 bant genişliği) ve 5,90 GHz merkez frekansı ile (%3,22 bant genişliği) 5,80 GHz – 5,99 GHz olarak elde edilmiştir. 2.4 GHz, 2.5 GHz ve 5.9 GHz frekanslarında kazanç değerleri sırasıyla 3.45 dBi, 3.58 dBi ve 4.93 dBi olarak verilebilir. 2.4 GHz, 2.5 GHz ve 5.9 GHz frekans bantlarında S11 değerleri -16.64 dB, -18.00 dB ve -15.11 dB'dir. Antenin 2.4 GHz, 2.5 GHz ve 5.9 GHz frekanslarındaki VSWR değerleri sırasıyla 1.35, 1.29 ve 1.43 olarak verilebilir. Sonuç olarak önerilen anten yüksek kazanca ve geniş düşük frekans bandına sahiptir. Anten, IEEE 802.11 b/g standartlarını destekler. Dolayısıyla Bluetooth ve Wi-Fi uygulamalarında kullanılabilir.

Project Number

1919B012102336

References

  • Montero-de-Paz, J., Oprea, I., Rymanov, V., Babiel, S., García-Muñoz, L. E., Lisauskas, A., ...& Carpintero, G. (2013). Compact modules for wireless communication systems in the E-band (71–76 GHz). Journal of Infrared, Millimeter, and Terahertz Waves, 34(3), 251-266.
  • Özkaya, U., Yiğit, E., Seyfi, L., Öztürk, Ş., & Singh, D. (2021). Comparative regression analysis for estimating resonant frequency of c-like patch antennas. Mathematical Problems in Engineering, 2021.
  • Palandöken, M., Rymanov, V., Stöhr, A., & Tekin, T. (2012, August). Compact metamaterial-based bias tee design for 1.55 μm waveguide-photodiode based 71–76GHz wireless transmitter. In Progress in Electromagnetics Research Symposium, PIERS.
  • Palandöken, M., & Ucar, M. H. (2014). Compact metamaterial‐inspired band‐pass filter. Microwave and Optical Technology Letters, 56(12), 2903-2907.
  • Palandöken, M., & Sondas, A. (2014). Compact Metamaterial Based Bandstop Filter. Microwave Journal, 57(10).
  • Malik, P. K., Padmanaban, S., & Holm-Nielsen, J. B. (Eds.). (2021). Microstrip Antenna Design for Wireless Applications. CRC Press.
  • Drabowitch, S., Papiernik, A., Griffiths, H., Encinas, J., & Smith, B. L. (2010). Modern antennas. Springer Science & Business Media.
  • Fang, D. G. (2017). Antenna theory and microstrip antennas. CRC Press.
  • Palandöken, M. (2011). Artificial materials based microstrip antenna design. Microstrip antennas, 43-50.
  • Palandoken, M., Grede, A., & Henke, H. (2009). Broadband microstrip antenna with left-handed metamaterials. IEEE Transactions on Antennas and Propagation, 57(2), 331-338.
  • Shravan, G. S., Suhas, L. S., Kumar, N. H., Vinay, S., & Kumar, N. G. (2019, July). 2x2 Circular Patch Antenna Array at 2.4 GHz for WSN Applications: Design and Performance Analysis of Circular Antenna Array and Comparison over Rectangular Array. In 2019 International Conference on Communication and Electronics Systems (ICCES) (pp. 887-891). IEEE.
  • Palandöken, M. (2017). Dual broadband antenna with compact double ring radiators for IEEE 802.11 ac/b/g/n WLAN communication applications. Turkish Journal of Electrical Engineering & Computer Sciences, 25(2), 1326-1333.
  • Baytöre, C., Özgönül, M. C., Palandöken, M., Özbakış, B., & Kaya, A. (2015, May). Low cost dual band monopole antenna design and analysis for 802.11 b/g/n/ac standards. In 2015 23nd Signal Processing and Communications Applications Conference (SIU) (pp. 2070-2073). IEEE.
  • İsa, A. T. A. Ş., ABBASOV, T., & KURT, M. B. (2016). High gain array antenna design of wireless communication applications. European Journal of Technique (EJT), 6(2), 145-151.
  • KESKİN, S. E. B., & GÜLER, C. (2021). DESIGN OF CIRCULAR SLOTTED RECTANGULAR MICROSTRIP PATCH ANTENNA WITH DUAL-RESONANCE FOR WLAN/WIMAX APPLICATIONS. Mühendislik Bilimleri ve Tasarım Dergisi, 9(4), 1296-1301.
  • SONDAŞ, A. WLAN/WiMAX Uygulamaları için Geniş Bant Mikroşerit Dipol Anten Tasarımı. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 7(1), 788-794.
  • Başaran, S. C., & Erdemli, Y. E. (2008). Dual-band split-ring antenna design for WLAN applications. Turkish Journal Of Electrical Engineering & Computer Sciences, 16(1), 79-86.
  • Nayak, P. B., Endluri, R., Verma, S., & Kumar, P. (2021). A novel compact dual-band antenna design for wlan applications. arXiv preprint arXiv:2106.13232.
  • Armağan, O., & Kahriman, M. (2016). 2.45 GHZ, 3.7 GHZ VE 5.8 GHZ FREKANSLARDA ÇALIŞAN ÜÇ-BANT YAMA ANTEN TASARIMI. Mühendislik Bilimleri ve Tasarım Dergisi, 4(3), 189-193.
  • Geetharamani, G., & Aathmanesan, T. (2019). Design and Development of Novel Patch Antenna for 2.4 GHz WLAN Applications. ICTACT Journal on Communication Technology, 10(1), 1943-1946.
  • Uqaili, R. S., Uqaili, J. A., Zahra, S., Soomro, F. B., & Akbar, A. (2020). A Study on Dual-band Microstrip Rectangular Patch Antenna for Wi-Fi. Proceedings of Engineering and Technology Innovation, 16, 1-12.
There are 21 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Hilal Kurt 0000-0001-8179-7506

Project Number 1919B012102336
Publication Date March 31, 2022
Published in Issue Year 2022

Cite

APA Kurt, H. (2022). High-Gain Rectangular Patch Microstrip Antenna for IEEE 802.11 b/g Applications. Avrupa Bilim Ve Teknoloji Dergisi(34), 657-660. https://doi.org/10.31590/ejosat.1084138