Research Article
BibTex RIS Cite

Design and Interpretation of Microstrip Patch Antenna Operating at 2.4GHz for Wireless WI-FI Application

Year 2022, , 672 - 675, 31.03.2022
https://doi.org/10.31590/ejosat.1084151

Abstract

With the renewed and changing technology in recent years, wireless communication has increased its importance in engineering, communication, transportation and almost every field. In this study, a Wi-Fi antenna with 2.4 GHz operating frequency, which is one of the leading studies of antenna technology, which can be used in wireless communication technology, has been designed. Wi-Fi antenna is very important for this technology, which has become indispensable for everyone today. To design the Wi-Fi antenna, the operating frequency specified in the IEEE 802.11 standards has been taken into account. While choosing the antenna model, micro-strip antenna was preferred due to its geometry, lightness, low production cost and compactness. While designing the antenna, CST Microwave Studio program was used and necessary measurements were made. While designing the antenna, FR-4 substrate with a dielectric coefficient of 4.3 and a thickness of 1.6 mm was used. Copper was used as the material for the ground and patch parts. As a result of the design, most of the intended goals were achieved. Graphs were analyzed from the CST microwave studio program. When the required S parameter value is examined; The antenna obtained as a result of this study operates in the 2.26 GHz-2.38 GHz band range, which is the targeted frequency of 2.4 GHz. The Wi-Fi antenna obtained in this study; return loss value is 25.90dB and gain value is 4.66 dBi. These results are acceptable according to the standards

Supporting Institution

TUBITAK

Project Number

1919B012102519

Thanks

This study has been carried out using the laboratory facilities of İzmir Katip Celebi University Smart Factory Systems Application and Research Center (AFSUAM). This study is supported by TUBITAK 2209-A University Students Research Projects Support Program within the scope of project numbered 1919B012102519.

References

  • Balanis, C. A. (2015). Antenna theory: analysis and design. John wiley &sons.
  • Özkaya, U., Yiğit, E., Seyfi, L., Öztürk, Ş., & Singh, D. (2021). Comparative regression analysis for estimating resonant frequency of c-like patch antennas. Mathematical Problems in Engineering, 2021.
  • Rymanov, Vitaly, et al. "Integrated photonic 71–76 GHz transmitter module employing high linearity double mushroom-type 1.55 μm waveguide photodiodes." 2012 IEEE International Topical Meeting on Microwave Photonics. IEEE, 2012.
  • M. Wegmuller, J. P. von der Weid, P. Oberson, and N. Gisin, “High resolution fiber distributed measurements with coherent OFDR,” in Proc. ECOC’00, 2000, paper 11.3.4, p. 109.
  • Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification, IEEE Std. 802.11, 1997.
  • Pozar, D. M. (2011). Microwave engineering. John wiley & sons.
  • Thaher, R. H., & Jamil, Z. S. (2018). Design of dual band microstrip antenna for Wi-Fi and WiMax applications. Telkomnika, 16(6), 2864-2870.
  • Palandöken, Merih, et al. "Compact metamaterial-based bias tee design for 1.55 μm waveguide-photodiode based 71–76GHz wireless transmitter." Progress in Electromagnetics Research Symposium, PIERS. 2012.
  • Palandöken, Merih, and Mustafa HB Ucar. "Compact metamaterial‐inspired band‐pass filter." Microwave and Optical Technology Letters 56.12 (2014): 2903-2907.
  • Palandöken, Merih, and Adnan Sondas. "Compact Metamaterial Based Bandstop Filter." Microwave Journal 57.10 (2014).
  • BAYTÖRE, C., GÖÇEN, C., PALANDÖKEN, M., Kaya, A., & ZORAL, E. Y. (2019). Compact metal-plate slotted WLAN-WIMAX antenna design with USB Wi-Fi adapter application. Turkish Journal of Electrical Engineering & Computer Sciences, 27(6), 4403-4417.
  • Wang, W., Ma, C., Zhang, X., Shen, J., Hanagata, N., Huangfu, J., & Xu, M. (2019). High-performance printable 2.4 GHz graphene-based antenna using water-transferring technology. Science and technology of advanced materials, 20(1), 870-875.
  • Rachmansyah, A. I., & Mutiara, A. B. (2011). Designing and manufacturing microstrip antenna for wireless communication at 2.4 GHz. International Journal of Computer and Electrical Engineering, 3(5), 670-675
  • Kütük, H., Teşneli, A. Y., & Teşneli, N. B. (2000). 3.3 GHz mikroşerit anten tasarımı ve farklı besleme yöntemleri için analizi. Sakarya University Journal of Science, 17(1), 119-124.
  • Afridi, M. A. (2015). Microstrip patch antenna− designing at 2.4 GHz frequency. Biol. Chem. Res, 2015, 128-132
  • Thaher, R. H., & Jamil, Z. S. (2018). Design of Dual Band Microstrip Antenna for Wi-Fi and WiMax Applications. TELKOMNlKA, 16(6), 2864-2870.
  • Mikrostrip, P. A., & Empat, S. Dual Band (1, 8 GHz dan 2, 4 GHz
  • Kim, M. K., Kim, K., Suh, Y. H., & Park, I. (2000, July). A T-shaped microstrip-line-fed wide slot antenna. In IEEE Antennas and Propagation Society International Symposium. Transmitting Waves of Progress to the Next Millennium. 2000 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (C (Vol. 3, pp. 1500-1503). IEEE.
  • Karmokar, D. K., Morshed, K. M., Numan-Al-Mobin, A. M., & Kabir, A. E. (2010). High gain multiband loaded inverted-F antennas for mobile WiMAX, Wi-Fi, bluetooth and WLAN operation. International Journal of Engineering (IJE), 4(3), 219-232.
  • Pei, Z., Ji, L., Zeng, X., Zhang, L., & Liu, C. (2019, October). A Compact Frequency Reconfigurable Patch Antenna. In 2019 International Symposium on Antennas and Propagation (ISAP) (pp. 1-2). IEEE.

Kablosuz Wi-Fi Uygulaması için 2.4GHz'de Çalışan Mikroşerit Yama Anten Tasarımı ve Yorumlanması

Year 2022, , 672 - 675, 31.03.2022
https://doi.org/10.31590/ejosat.1084151

Abstract

Son yıllarda yenilenen ve değişen teknoloji ile kablosuz iletişim mühendislik, iletişim, ulaşım ve hemen her alanda önemini artırmıştır. Bu çalışmada, kablosuz iletişim teknolojisinde kullanılabilecek anten teknolojisinin önde gelen çalışmalarından biri olan 2.4 GHz çalışma frekansına sahip bir Wi-Fi anteni tasarlanmıştır. Günümüzde herkes için vazgeçilmez hale gelen bu teknoloji için Wi-Fi anteni oldukça önemlidir. Wi-Fi anteni tasarlanırken IEEE 802.11 standartlarında belirtilen çalışma frekansı dikkate alınmıştır. Anten modeli seçilirken geometrisi, hafifliği, düşük üretim maliyeti ve kompaktlığı nedeniyle mikro şerit anten tercih edilmiştir. Anten tasarımı yapılırken CST Microwave Studio programı kullanılmış ve gerekli ölçümler yapılmıştır. Anten tasarlanırken dielektrik katsayısı 4,3 ve kalınlığı 1,6 mm olan FR-4 substratı kullanılmıştır. Zemin ve yama parçaları için malzeme olarak bakır kullanılmıştır. Tasarımın bir sonucu olarak, amaçlanan hedeflerin çoğuna ulaşıldı. Grafikler, CST mikrodalga stüdyo programından analiz edildi. İstenilen S parametre değeri incelendiğinde; bu çalışma sonucunda elde edilen anten, hedeflenen frekans olan 2.4 GHz olan 2.26 GHz-2.38 GHz bant aralığında çalışmaktadır. Bu çalışmada elde edilen Wi-Fi anteni; geri dönüş kayıp değeri 25.90dB ve kazanç değeri 4.66 dBi'dir. Bu sonuçlar standartlara göre kabul edilebilir niteliktedir.

Project Number

1919B012102519

References

  • Balanis, C. A. (2015). Antenna theory: analysis and design. John wiley &sons.
  • Özkaya, U., Yiğit, E., Seyfi, L., Öztürk, Ş., & Singh, D. (2021). Comparative regression analysis for estimating resonant frequency of c-like patch antennas. Mathematical Problems in Engineering, 2021.
  • Rymanov, Vitaly, et al. "Integrated photonic 71–76 GHz transmitter module employing high linearity double mushroom-type 1.55 μm waveguide photodiodes." 2012 IEEE International Topical Meeting on Microwave Photonics. IEEE, 2012.
  • M. Wegmuller, J. P. von der Weid, P. Oberson, and N. Gisin, “High resolution fiber distributed measurements with coherent OFDR,” in Proc. ECOC’00, 2000, paper 11.3.4, p. 109.
  • Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification, IEEE Std. 802.11, 1997.
  • Pozar, D. M. (2011). Microwave engineering. John wiley & sons.
  • Thaher, R. H., & Jamil, Z. S. (2018). Design of dual band microstrip antenna for Wi-Fi and WiMax applications. Telkomnika, 16(6), 2864-2870.
  • Palandöken, Merih, et al. "Compact metamaterial-based bias tee design for 1.55 μm waveguide-photodiode based 71–76GHz wireless transmitter." Progress in Electromagnetics Research Symposium, PIERS. 2012.
  • Palandöken, Merih, and Mustafa HB Ucar. "Compact metamaterial‐inspired band‐pass filter." Microwave and Optical Technology Letters 56.12 (2014): 2903-2907.
  • Palandöken, Merih, and Adnan Sondas. "Compact Metamaterial Based Bandstop Filter." Microwave Journal 57.10 (2014).
  • BAYTÖRE, C., GÖÇEN, C., PALANDÖKEN, M., Kaya, A., & ZORAL, E. Y. (2019). Compact metal-plate slotted WLAN-WIMAX antenna design with USB Wi-Fi adapter application. Turkish Journal of Electrical Engineering & Computer Sciences, 27(6), 4403-4417.
  • Wang, W., Ma, C., Zhang, X., Shen, J., Hanagata, N., Huangfu, J., & Xu, M. (2019). High-performance printable 2.4 GHz graphene-based antenna using water-transferring technology. Science and technology of advanced materials, 20(1), 870-875.
  • Rachmansyah, A. I., & Mutiara, A. B. (2011). Designing and manufacturing microstrip antenna for wireless communication at 2.4 GHz. International Journal of Computer and Electrical Engineering, 3(5), 670-675
  • Kütük, H., Teşneli, A. Y., & Teşneli, N. B. (2000). 3.3 GHz mikroşerit anten tasarımı ve farklı besleme yöntemleri için analizi. Sakarya University Journal of Science, 17(1), 119-124.
  • Afridi, M. A. (2015). Microstrip patch antenna− designing at 2.4 GHz frequency. Biol. Chem. Res, 2015, 128-132
  • Thaher, R. H., & Jamil, Z. S. (2018). Design of Dual Band Microstrip Antenna for Wi-Fi and WiMax Applications. TELKOMNlKA, 16(6), 2864-2870.
  • Mikrostrip, P. A., & Empat, S. Dual Band (1, 8 GHz dan 2, 4 GHz
  • Kim, M. K., Kim, K., Suh, Y. H., & Park, I. (2000, July). A T-shaped microstrip-line-fed wide slot antenna. In IEEE Antennas and Propagation Society International Symposium. Transmitting Waves of Progress to the Next Millennium. 2000 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (C (Vol. 3, pp. 1500-1503). IEEE.
  • Karmokar, D. K., Morshed, K. M., Numan-Al-Mobin, A. M., & Kabir, A. E. (2010). High gain multiband loaded inverted-F antennas for mobile WiMAX, Wi-Fi, bluetooth and WLAN operation. International Journal of Engineering (IJE), 4(3), 219-232.
  • Pei, Z., Ji, L., Zeng, X., Zhang, L., & Liu, C. (2019, October). A Compact Frequency Reconfigurable Patch Antenna. In 2019 International Symposium on Antennas and Propagation (ISAP) (pp. 1-2). IEEE.
There are 20 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Gokcen Demırbas 0000-0002-9636-3919

Ekrem Akar 0000-0002-8945-0619

Project Number 1919B012102519
Publication Date March 31, 2022
Published in Issue Year 2022

Cite

APA Demırbas, G., & Akar, E. (2022). Design and Interpretation of Microstrip Patch Antenna Operating at 2.4GHz for Wireless WI-FI Application. Avrupa Bilim Ve Teknoloji Dergisi(34), 672-675. https://doi.org/10.31590/ejosat.1084151