Research Article
BibTex RIS Cite

Şeker Pancarı Posasının Bantlı Kurutucuda Kuruma Karakteristiklerinin Deneysel İncelenmesi

Year 2022, , 733 - 738, 31.03.2022
https://doi.org/10.31590/ejosat.1084940

Abstract

Dünyada enerjinin %80’nini kömür, doğalgaz ve petrol gibi fosil yakıtları ile karşılanmaktadır. Yenilenebilir enerji kaynaklarından biyoyakıtlar fosil yakıtlara alternatif olarak kabul edilmektedir. Biyoyakıt üretiminin fosil yakıtlara oranla maliyetlerinin daha yüksek olması kurutma teknolojilerinin geliştirilmesi önem arz etmektedir. Önemli biyoyakıtlardan biri olan, mısır, kolza tohumu vb. alternatifleri göz önünde bulundurulduğunda şeker pancarının biyoyakıt için en verimli hammadde olması ile birlikte daha ekonomik olduğu bildirilmektedir. Şeker pancarı posası’nın biyoyakıt elde edilmesinde kullanımı çevresel atığın değerlendirilmesi açısından önemlidir. Bu çalışmada amaç, bantlı kurutucuda şeker pancarı posası’nın (ortalama nem içeriği %85 y.b) kurutma karakteristiğinin incelenmesidir. Şeker pancarı posası için 85˚C sıcaklıkta 20 cm bant kalınlık deney koşullarında gerçekleştirilmiştir. Ürün ilk nem içeriği %85 (yb) ‘den %14 (yb) neme kadar kurutulmuştur. Ürün nem içeriğin değişimi ile nem oranın değişiminin zaman bağlı olarak incelediğimizde kurutmanın 40 dk’ya kadar hızlı daha sonra yavaşladığı görülmüştür. Kuruma kızının nem içeriğine bağlı olarak incelediğimizde ürün kuruma başladığında üründen nemin uzlaşması yavaş olduğu çıkarılırmıştır. Bantlı kurutucuda şeker pancarı küspesinin kurutulmasında özgül enerji tüketimi hesaplamaları yapılmış ve 2,06 kWh/kg olarak bulunmuştur. Çalışma ile atıktan türetilmiş yakıt çalışmalarına katkı sağlaması hedeflenmektedir.

References

  • European Commission (EC), Directive 2009/28/EC of the European Parliament and of the Council on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC, 2009.
  • Botha, T., & von Blottnitz, H. (2006). A comparison of the environmental benefits of bagasse-derived electricity and fuel ethanol on a life-cycle basis. Energy Policy, 34(17), 2654–2661. https://doi.org/10.1016/j.enpol.2004.12.017
  • Kondili, E.M.& Kaldellis, J.K. (2007). Biofuel implementation in East Europe: current status and future prospects. Renew.and Sustain. Energy Rev.11(9), 2137–2151. https://doi.org/10.1016/j.rser.2006.05.001
  • Tsoutsos, T., Kouloumpis, V., Zafeiris, T. & Zolkou, P. (2008). Life cycle assessment for biodiesel in Greek climate conditions. In: Proceedings of the sixteenth European Biomass Conference & Exhibition—From Research to Industry and Markets, Valencia, Spain, 2nd–6th June 2008.
  • Spyros, F., Victor, K., & Theocharis, T. (2011). Life cycle analysis for bioethanol production from sugar beet crops in Greece. Energy Policy,39(9), 4834–4841. https://doi.org/10.1016/j.enpol.2011.06.036
  • Singh, D.P.& Dwevedi, A. (2018). Production of clean energy by green ways, A. Dwevedi., Ed. Solutions to Environmental Problems Involving Nanotechnology and Enzyme Technology, 49-90.
  • Güneş, Z., Kırtıla, H.B., Küçükataa, Y. Ş.& Toprak, B. (2020). Şeker pancarı ve yan ürünlerinden biyoyakıt (etanol) üretimi ve biyoetanolün endüstriyel kullanımının değerlendirilmesi, İstanbul Sabahattin Zaim Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2(2), 16-24.
  • Demirbaş, A. (2008). Biofuels sources, biofuel policy, biofuel economy and global biofuel projections” Energy Conversion and Management, 49, 2106–2116. https://doi.org/10.1016/j.enconman.2008.02.020
  • Šantek, B., Gwehenberger, G., Šantek, M.I., Narodoslawsky, M., & Horvat, P. (2010). Evaluation of energy demand and the sustainability of different bioethanol production processes from sugar beet”, Conservation and Recycling, 54(11), 872– 877. https://doi.org/10.1016/j.resconrec.2010.01.006
  • Haankuku, C., Epplin, F., & Kakani, V.G. (2015). Industrial sugar beets to biofuel: Field to fuel production system and cost estimates”, Biomass and Bioenergy, 80, 267-277. https://doi.org/10.1016/j.biombioe.2015.05.027
  • Usmani, Z., Sharma, M., Diwan, D., Tripathi, M., Whale, E., Jayakody, L. N., Moreau, B., Thakur, V.K., Tuohy, M., Gupta, V. K. (2022). Valorization of sugar beet pulp to value-added products: A review. Bioresource Technology, 346, 126580. https://doi.org/10.1016/j.biortech.2021.126580
  • Zhou, G., Zhang, G., & Qi, D. (2011). A New Method of Producing Bio-Energy by Using Sugar Beets. Energy Procedia, 12, 873-877. https://doi.org/10.1016/j.egypro.2011.10.115
  • Bušić, A., Marđetko, N., Kundas, S., Morzak, G., Belskaya, H., Šantek, M.I., & Šantek, B. (2018). Bioethanol Production from Renewable Raw Materials and its Separation and Purification: A Review. Food Technology and Biotechnology, 56(3), pp. 289–311. https://doi.org/10.17113/ftb.56.03.18.5546
  • (2021) The SGB website. [Online]. Available: https://arastirma.tarimorman.gov.tr/tepge/Belgeler/PDF%20Tar%C4%B1m%20%C3%9Cr%C3%BCnler
  • Lal, R. (2010). Managing soils for a warming earth in a food-insecure and energy-starved world. Journal of Plant Nutrition and Soil Science, 173, 4–5. https://doi.org/10.1002/jpln.200900290
  • Karp, A., & Richter, G. M. (2011). Meeting the challenge of food and energy security”, Journal of Experimental Botany, 62 (10), 3263–3271. https://doi.org/10.1093/jxb/err099
  • Tüik (2020) Türkiye İstatistik Kurumu. [Online]. Available: https://data.tuik.gov.tr/Kategori/GetKategori?p=cevre-ve-enerji-103&dil=1
  • İlleez, B. (2020). Türkiye’de Biyokütle Enerjisi”, Türkiye’nin Enerji Görünümü, Makine Mühendisliği Oda Raporu, 317-346.
  • Joanna, B., Michal, B., Piotr, D., Agnieszka, W., Dorota, K., & Izabela, W. (2018). Sugar beet pulp as a source of valuable biotechnological products. Advances in biotechnology for food industry, Handbook of Food Bioengineering, 359–392. https://doi.org/10.1016/B978-0-12-811443-8.00013-X
  • Bhandari, B., (2015). Handbook of Industrial Drying, Edited by AS Mujumdar: CRC Press: Boca Raton, FL; 2015.
  • Silva, R.H.P., Rezende, A.S.C., Inacio, D.F. S. (2016). Pectin-rich by-products in feeding horses-A review. Cogent Food & Agriculture, 2, 1-8. https://doi.org/10.1080/23311932.2016.1193925
  • Legrand, G. (2005). The correct use of pressed beet pulp. Royal Belgian Institute for Sugar Beet Improvement IRBAB Technical Guide,1-46.
  • Karlsson, C.P., Jansson, A., Essen-Gustavsson, B., & Lindberg, J.E. (2002). Effect of molassed sugar beet pulp on nutrient utilisation and metabolic parameters during exercise”, Equine Vet J.,6(34), 4-49. https://doi.org/10.1111/j.2042-3306.2002.tb05390.x
  • Tomaszewska, J., Bielinski, D., Binczarski, M., Berlowska, J., Dziugan, P., Piotrowski, J. Stanishesusky, A., & Witonska, I.A. (2018). Products of sugar beet processing as raw materials for chemicals and biodegradable polymers. RSC Advances, 6, 3161–3177. https://doi.org/10.1039/C7RA12782K
  • Liu, B., Zhang, J., Liu, L., & Hotchkiss, A.T. (2011). Preparation and properties of water and glycerol-plasticized sugar beet pulp plastics. Journal of Environmental Polymer Degradation, 19 (3), 559-567. https://doi.org/10.1007/s10924-011-0322-4
  • Rana, A. K., Gupta, V. K., Newbold, J., Roberts, D., Rees, R. M., Krishnamurthy, S., & Thakur, V. K. (2022). Sugar beet pulp: Resurgence and trailblazing journey towards a circular bioeconomy. Fuel, 312, 22953. https://doi.org/10.1016/j.fuel.2021.122953
  • Çelik, E., Parlak, N., & Çay, Y. (2021). Experimental and numerical study on drying behavior of CORN grain. Heat and Mass Transfer, vol. 57, pp. 321–332. https://doi.org/10.1007/s00231-020-02954-2
  • Parlak, N. (2015). Fluidized bed drying characteristics and modeling of ginger (zingiber officinale) slices”, Heat Mass Transfer, 51, 1085–1095. https://doi.org/10.1007/s00231-014-1480-4
  • Reichert, I., Olney, P. Lahmer, T. (2019). Influence of the error description on model-based design of experiments. Engineering structures, vol. 193/15, pp. 100-109. https://doi.org/10.1016/j.engstruct.2019.05.002
  • Parlak, N. (2014). Akişkan yatakli kurutucuda zencefilin kuruma kinetiğinin incelenmesi”, Gazi Üniv. Müh. Mim. Fak. Der., 29(2), 261-269. https://doi.org/10.17341/gummfd.34777
  • Boulemtafes-Boukadoum, A., & Benzaoui, A. (2011). Energy and exergy analysis of solar drying process of Mint. Energy Procedia, 6, 583–591. https://doi.org/10.1016/j.egypro.2011.05.067
  • Hepbasli, A. (2008). A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future. Renewable and Sustainable Energy Reviews,12/(3), 593-661. https://doi.org/10.1016/j.rser.2006.10.001
  • Taghinezhad, E., Kaveh, M., Jahanbakhshi, A., Golpour, I. (2020). Use of artificial intelligence for the estimation of effective moisture diffusivity, specific energy consumption, color and shrinkage in quince drying. J Food Process Eng., vol. 43/e13358. https://doi.org/10.1111/jfpe.13358
  • Yahya, M., Fudholi, A., & Sopian, K. (2017). Energy and exergy analyses of solar-assisted fluidized bed drying integrated with biomass furnace. Renewable Energy,105,22-29. https://doi.org/10.1016/j.renene.2016.12.049
  • Pronyk, C., Cenkowski, S., & Muir, W. E.(2004). Drying Foodstuffs with Superheated Steam. Drying Technology, 22(5), 899–916. https://doi.org/10.1081/DRT-120038571

Experimental Investigation of Drying Characteristics of Sugar Beet Pulp in Belt Dryer

Year 2022, , 733 - 738, 31.03.2022
https://doi.org/10.31590/ejosat.1084940

Abstract

In the world, 80% of the energy is met by fossil fuels such as coal, natural gas and oil. Biofuels from renewable energy sources are accepted as an alternative to fossil fuels. The fact that the cost of biofuel production is higher than fossil fuels is important for the development of drying technologies. One of the important biofuels, corn, rapeseed etc. considering the alternatives, it is reported that sugar beet is the most efficient raw material for biofuel and is more economical. The use of sugar beet pulp in the production of biofuel is important for the evaluation of environmental waste. The aim of this study is to examine the drying characteristics of sugar beet pulp (average moisture content 85% w.b.) in a belt dryer. The product was dried from initial moisture content of 85% (wb) to 14% (wb). When we examine the change in moisture content of the product and the change in moisture content depending on time, it has been observed that drying is fast up to 40 minutes and then slowed down. When we examined the drying based on the moisture content of the daughter, it was found that when the product started to dry, the moisture reconciliation of the product was slow. The specific energy consumption calculations were made for the drying of sugar beet pulp in the belt dryer and it was found to be 2.06 kWh/kg. The study of the study is to contribute to waste-derived fuel studies.

References

  • European Commission (EC), Directive 2009/28/EC of the European Parliament and of the Council on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC, 2009.
  • Botha, T., & von Blottnitz, H. (2006). A comparison of the environmental benefits of bagasse-derived electricity and fuel ethanol on a life-cycle basis. Energy Policy, 34(17), 2654–2661. https://doi.org/10.1016/j.enpol.2004.12.017
  • Kondili, E.M.& Kaldellis, J.K. (2007). Biofuel implementation in East Europe: current status and future prospects. Renew.and Sustain. Energy Rev.11(9), 2137–2151. https://doi.org/10.1016/j.rser.2006.05.001
  • Tsoutsos, T., Kouloumpis, V., Zafeiris, T. & Zolkou, P. (2008). Life cycle assessment for biodiesel in Greek climate conditions. In: Proceedings of the sixteenth European Biomass Conference & Exhibition—From Research to Industry and Markets, Valencia, Spain, 2nd–6th June 2008.
  • Spyros, F., Victor, K., & Theocharis, T. (2011). Life cycle analysis for bioethanol production from sugar beet crops in Greece. Energy Policy,39(9), 4834–4841. https://doi.org/10.1016/j.enpol.2011.06.036
  • Singh, D.P.& Dwevedi, A. (2018). Production of clean energy by green ways, A. Dwevedi., Ed. Solutions to Environmental Problems Involving Nanotechnology and Enzyme Technology, 49-90.
  • Güneş, Z., Kırtıla, H.B., Küçükataa, Y. Ş.& Toprak, B. (2020). Şeker pancarı ve yan ürünlerinden biyoyakıt (etanol) üretimi ve biyoetanolün endüstriyel kullanımının değerlendirilmesi, İstanbul Sabahattin Zaim Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2(2), 16-24.
  • Demirbaş, A. (2008). Biofuels sources, biofuel policy, biofuel economy and global biofuel projections” Energy Conversion and Management, 49, 2106–2116. https://doi.org/10.1016/j.enconman.2008.02.020
  • Šantek, B., Gwehenberger, G., Šantek, M.I., Narodoslawsky, M., & Horvat, P. (2010). Evaluation of energy demand and the sustainability of different bioethanol production processes from sugar beet”, Conservation and Recycling, 54(11), 872– 877. https://doi.org/10.1016/j.resconrec.2010.01.006
  • Haankuku, C., Epplin, F., & Kakani, V.G. (2015). Industrial sugar beets to biofuel: Field to fuel production system and cost estimates”, Biomass and Bioenergy, 80, 267-277. https://doi.org/10.1016/j.biombioe.2015.05.027
  • Usmani, Z., Sharma, M., Diwan, D., Tripathi, M., Whale, E., Jayakody, L. N., Moreau, B., Thakur, V.K., Tuohy, M., Gupta, V. K. (2022). Valorization of sugar beet pulp to value-added products: A review. Bioresource Technology, 346, 126580. https://doi.org/10.1016/j.biortech.2021.126580
  • Zhou, G., Zhang, G., & Qi, D. (2011). A New Method of Producing Bio-Energy by Using Sugar Beets. Energy Procedia, 12, 873-877. https://doi.org/10.1016/j.egypro.2011.10.115
  • Bušić, A., Marđetko, N., Kundas, S., Morzak, G., Belskaya, H., Šantek, M.I., & Šantek, B. (2018). Bioethanol Production from Renewable Raw Materials and its Separation and Purification: A Review. Food Technology and Biotechnology, 56(3), pp. 289–311. https://doi.org/10.17113/ftb.56.03.18.5546
  • (2021) The SGB website. [Online]. Available: https://arastirma.tarimorman.gov.tr/tepge/Belgeler/PDF%20Tar%C4%B1m%20%C3%9Cr%C3%BCnler
  • Lal, R. (2010). Managing soils for a warming earth in a food-insecure and energy-starved world. Journal of Plant Nutrition and Soil Science, 173, 4–5. https://doi.org/10.1002/jpln.200900290
  • Karp, A., & Richter, G. M. (2011). Meeting the challenge of food and energy security”, Journal of Experimental Botany, 62 (10), 3263–3271. https://doi.org/10.1093/jxb/err099
  • Tüik (2020) Türkiye İstatistik Kurumu. [Online]. Available: https://data.tuik.gov.tr/Kategori/GetKategori?p=cevre-ve-enerji-103&dil=1
  • İlleez, B. (2020). Türkiye’de Biyokütle Enerjisi”, Türkiye’nin Enerji Görünümü, Makine Mühendisliği Oda Raporu, 317-346.
  • Joanna, B., Michal, B., Piotr, D., Agnieszka, W., Dorota, K., & Izabela, W. (2018). Sugar beet pulp as a source of valuable biotechnological products. Advances in biotechnology for food industry, Handbook of Food Bioengineering, 359–392. https://doi.org/10.1016/B978-0-12-811443-8.00013-X
  • Bhandari, B., (2015). Handbook of Industrial Drying, Edited by AS Mujumdar: CRC Press: Boca Raton, FL; 2015.
  • Silva, R.H.P., Rezende, A.S.C., Inacio, D.F. S. (2016). Pectin-rich by-products in feeding horses-A review. Cogent Food & Agriculture, 2, 1-8. https://doi.org/10.1080/23311932.2016.1193925
  • Legrand, G. (2005). The correct use of pressed beet pulp. Royal Belgian Institute for Sugar Beet Improvement IRBAB Technical Guide,1-46.
  • Karlsson, C.P., Jansson, A., Essen-Gustavsson, B., & Lindberg, J.E. (2002). Effect of molassed sugar beet pulp on nutrient utilisation and metabolic parameters during exercise”, Equine Vet J.,6(34), 4-49. https://doi.org/10.1111/j.2042-3306.2002.tb05390.x
  • Tomaszewska, J., Bielinski, D., Binczarski, M., Berlowska, J., Dziugan, P., Piotrowski, J. Stanishesusky, A., & Witonska, I.A. (2018). Products of sugar beet processing as raw materials for chemicals and biodegradable polymers. RSC Advances, 6, 3161–3177. https://doi.org/10.1039/C7RA12782K
  • Liu, B., Zhang, J., Liu, L., & Hotchkiss, A.T. (2011). Preparation and properties of water and glycerol-plasticized sugar beet pulp plastics. Journal of Environmental Polymer Degradation, 19 (3), 559-567. https://doi.org/10.1007/s10924-011-0322-4
  • Rana, A. K., Gupta, V. K., Newbold, J., Roberts, D., Rees, R. M., Krishnamurthy, S., & Thakur, V. K. (2022). Sugar beet pulp: Resurgence and trailblazing journey towards a circular bioeconomy. Fuel, 312, 22953. https://doi.org/10.1016/j.fuel.2021.122953
  • Çelik, E., Parlak, N., & Çay, Y. (2021). Experimental and numerical study on drying behavior of CORN grain. Heat and Mass Transfer, vol. 57, pp. 321–332. https://doi.org/10.1007/s00231-020-02954-2
  • Parlak, N. (2015). Fluidized bed drying characteristics and modeling of ginger (zingiber officinale) slices”, Heat Mass Transfer, 51, 1085–1095. https://doi.org/10.1007/s00231-014-1480-4
  • Reichert, I., Olney, P. Lahmer, T. (2019). Influence of the error description on model-based design of experiments. Engineering structures, vol. 193/15, pp. 100-109. https://doi.org/10.1016/j.engstruct.2019.05.002
  • Parlak, N. (2014). Akişkan yatakli kurutucuda zencefilin kuruma kinetiğinin incelenmesi”, Gazi Üniv. Müh. Mim. Fak. Der., 29(2), 261-269. https://doi.org/10.17341/gummfd.34777
  • Boulemtafes-Boukadoum, A., & Benzaoui, A. (2011). Energy and exergy analysis of solar drying process of Mint. Energy Procedia, 6, 583–591. https://doi.org/10.1016/j.egypro.2011.05.067
  • Hepbasli, A. (2008). A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future. Renewable and Sustainable Energy Reviews,12/(3), 593-661. https://doi.org/10.1016/j.rser.2006.10.001
  • Taghinezhad, E., Kaveh, M., Jahanbakhshi, A., Golpour, I. (2020). Use of artificial intelligence for the estimation of effective moisture diffusivity, specific energy consumption, color and shrinkage in quince drying. J Food Process Eng., vol. 43/e13358. https://doi.org/10.1111/jfpe.13358
  • Yahya, M., Fudholi, A., & Sopian, K. (2017). Energy and exergy analyses of solar-assisted fluidized bed drying integrated with biomass furnace. Renewable Energy,105,22-29. https://doi.org/10.1016/j.renene.2016.12.049
  • Pronyk, C., Cenkowski, S., & Muir, W. E.(2004). Drying Foodstuffs with Superheated Steam. Drying Technology, 22(5), 899–916. https://doi.org/10.1081/DRT-120038571
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Emel Çelik 0000-0002-4165-8402

Nezaket Parlak 0000-0002-8469-2192

Publication Date March 31, 2022
Published in Issue Year 2022

Cite

APA Çelik, E., & Parlak, N. (2022). Şeker Pancarı Posasının Bantlı Kurutucuda Kuruma Karakteristiklerinin Deneysel İncelenmesi. Avrupa Bilim Ve Teknoloji Dergisi(34), 733-738. https://doi.org/10.31590/ejosat.1084940