Research Article
BibTex RIS Cite

X Band Uygulamaları için Metasurface Tabanlı Yansıma Tipi Lineer Polarizasyon Dönüşümü

Year 2022, , 773 - 777, 31.03.2022
https://doi.org/10.31590/ejosat.1086520

Abstract

Polarizasyon dönüştürücüler elektromanyetik dalganın elektrik alan bileşenin yayılma davranışını tanımlar elektromanyetikte. Polarizasyon dönüştürücüler mikrodalga cihazların performansının artırılması için yaygın bir şekilde kullanılmaktadır. Son yıllarda polarizasyon dönüştürücüler metayüzey temelli olarak üretilmektedir, geneleksel yöntelerle üretilen polarizasyon dönüştürücülere nispeten büyük avantajlara sahip oldukları için. Bu çalışmada metayüzey temelli mikrodalga X bandında çalışan yansıma tip polarizasyon dönüştürücü önerildi. Önerilen dizayn 9.1GHz- 12 GHz aralığında %90 üzerinde lineer polarizasyon dönüşüm oranına (PCR) sahiptir. Ayırca eğik açı altında 45 dereceye kadar %80 üzerinde lineer polarizasyon dönüşüm performansı sağlar. Dizayn metal sonlandırma, kolay erişilebilir FR4 ve metayüzeyden oluşmaktadır. Önerilen metayüzey temelli polarizasyon dönüştürücünün fiziksel mekanizmasının daha iyi anlaşılması için u-v eksenlerinde analizi yapıldı hem de rezonans frekanslarında yüzey akım davranışları incelendi. Önerilen dizayn normal geliş altında hem TE hem de TM modda aynı davranışı gösterdiği için polarizasyon bağımsız olarak davranmaktadır. Dizayn CST mikrowave Studio programında yaratıldı ve simülasyon sonuçlar Matlab programı vasıtasıyla işlendi. Sonuçlar diğer X bant polarizasyon dönüştürücüler ile karşılaştırıldı ve önerilen tasarımın mevcut metasurface polarizasyon dönüştürücülere göre eğik açı performansı, tek tasarım, uygun maliyetli ve kalınlık açısından üstün olduğu görüldü.

References

  • Ozturk, G. (2022). Ultra-thin, wide-angle and bandwidth-enhanced linear and circular metasurface-based reflection-type polarization converter at X-band microwave frequency, Journal of Electromagnetic Waves and Applcation., in press, 1-11.
  • Zheng, Q. , Guo, C., & Ding, J. (2018). Wideband metasurface-based reflective polarization converter for linear-to-linear and linear-to-circular polarization conversion. IEEE Antennas Wirel Propag Lett., 17(8), 1459–1463.
  • Khan, M.I., Fraz, Q., Tahir, & F.A. (2017). Ultra-wideband cross polarization conversion metasurface insensitive to incidence angle. J Appl Phys., 121(4) 045103.
  • Wang, W., Yan, F., Tan, S., Zhou, H. and Hou, Y. (2017). Ultrasensitive terahertz metamaterial sensor based on vertical split ring resonators. Photonics Research, 5(6), 571-577.
  • Dong, Y., & Itoh, T. (2012). Metamaterial-based antennas. Proceedings of the IEEE, 100(7), 2271-2285.
  • Landy, N. I., Sajuyigbe, S., Mock, J. J. , Smith, D. R., & Padilla, W. J. (2008). Perfect metamaterial absorber. Physical review letters, 100(20), 207402.
  • Lin, B. Q., Da, X. Y., Wu, J. L., Li, W., Fang, Y. W., & Zhu, Z. H. (2016). Ultra‐wideband and high‐efficiency cross polarization converter based on anisotropic metasurface. Microwave and optical technology letters, 58(10), 2402-2405.
  • Grady, N. K., Heyes, J. E., Chowdhury, D. R., Zeng, Y., Reiten, M. T., Azad, A. K., & Chen, H. T. (2013). Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science, 340(6138), 1304-1307.
  • Cheng, Y. Z., Fang, C., Mao, X. S., Gong, R. Z., & Wu, L. (2016). Design of an ultrabroadband and high-efficiency reflective linear polarization convertor at optical frequency. IEEE Photonics Journal, 8(6), 1-9.
  • Ozturk, G., Hasar, U. C., Bute, M., & Ertugrul, M. (2020). Determination of constitutive parameters of strong-coupled bianisotropic metamaterials using oblique incidence scattering parameters. IEEE Transactions on Antennas and Propagation, 69(2), 918-927.
  • Hasar, U. C., & Bute, M. (2020). Method for retrieval of electromagnetic properties of inhomogeneous reciprocal chiral metamaterials. IEEE Transactions on Antennas and Propagation, 68(7), 5714-5717.
  • Lai., S., Wu, Y., & Gu, W., (2021). Design of a Transparent Metamaterial Cross Polarization Converter With Large Incident Angle Range. IEEE Photonics Journal, 13(4), 1-5.
  • Qiao, Q., Wang, Y., Yang, G., Fu, Y., & Liu, Y. (2021). Broadband of linear-to-linear and double-band of linear-to-circular polarization converter based on a graphene sheet with a π-shaped hollow array. Optical Materials Express, 11(9), 2952-2965.
  • Chen, H. Y., Wang, J. F., Ma, H., Qu, S. B., Zhang, J. Q., Xu, Z., & Zhang, A. X. (2015). Broadband perfect polarization conversion metasurfaces. Chinese Physics B, 24(1), 014201.
  • Huang, X., Chen, J., & Yang, H. (2017). High-efficiency wideband reflection polarization conversion metasurface for circularly polarized waves. Journal of Applied Physics, 122(4), 043102.
  • Matrosov, S. Y., Clark, K. A., Martner, B. E., & Tokay, A. (2002). X-band polarimetric radar measurements of rainfall. Journal of Applied Meteorology, 41(9), 941-952.
  • Huque, M. T. I. U., Hosain, M. K., Islam, M. S., & Chowdhury, M. A. (2011). Design and performance analysis of microstrip array antennas with optimum parameters for X-band applications. International Journal of Advanced Computer Science and Applications, 2(4).
  • Hirose, M., Ishizone, T., & Komiyama, K. (2004). Antenna pattern measurements using photonic sensor for planar near-field measurement at X band. IEICE Transactions on Communications, 87(3), 727-734.
  • Lončar, J., Grbic, A., & Hrabar, S. (2018). A Reflective Polarization Converting Metasurface at ${X} $-Band Frequencies. IEEE Transactions on Antennas and Propagation, 66(6), 3213-3218.

Metasurface Based Reflection Type Linear Polarization Conversion for X Band Applications

Year 2022, , 773 - 777, 31.03.2022
https://doi.org/10.31590/ejosat.1086520

Abstract

Polarization conversion describe the propagation behavior of the electric field component of the electromagnetic wave. Polarization converters are widely used to improve the performance of microwave devices. In recent years, polarization converters have been produced on a metasurface basis, as they have relatively great advantages over polarization converters produced by conventional methods. In this study, a metasurface-based reflection type polarization converter operating in the microwave X band is proposed. The proposed design has a linear polarization conversion rate (PCR) of over 90% in the 9.1 GHz-12 GHz frequency range. In addition, the proposed design provides linear polarization conversion performance over 80% up to 45 degrees under oblique angle. The design consists of metal termination, easily accessible FR4 and metasurface. In order to better understand the physical mechanism of the proposed metasurface-based polarization transducer, its analysis in the u-v axes was performed as well as the surface current behaviors at resonance frequencies. Since the proposed design shows the same behavior in both TE and TM modes under normal incidence, the converter behaves polarization independent. The Design CST was created in the Microwave Studio program and the simulation results were processed by the Matlab program. The results were compared with other X band polarization converters and it was seen that the proposed design is superior to existing metasurface polarization converters in oblique angle performance, single design, cost-effective and thickness.

References

  • Ozturk, G. (2022). Ultra-thin, wide-angle and bandwidth-enhanced linear and circular metasurface-based reflection-type polarization converter at X-band microwave frequency, Journal of Electromagnetic Waves and Applcation., in press, 1-11.
  • Zheng, Q. , Guo, C., & Ding, J. (2018). Wideband metasurface-based reflective polarization converter for linear-to-linear and linear-to-circular polarization conversion. IEEE Antennas Wirel Propag Lett., 17(8), 1459–1463.
  • Khan, M.I., Fraz, Q., Tahir, & F.A. (2017). Ultra-wideband cross polarization conversion metasurface insensitive to incidence angle. J Appl Phys., 121(4) 045103.
  • Wang, W., Yan, F., Tan, S., Zhou, H. and Hou, Y. (2017). Ultrasensitive terahertz metamaterial sensor based on vertical split ring resonators. Photonics Research, 5(6), 571-577.
  • Dong, Y., & Itoh, T. (2012). Metamaterial-based antennas. Proceedings of the IEEE, 100(7), 2271-2285.
  • Landy, N. I., Sajuyigbe, S., Mock, J. J. , Smith, D. R., & Padilla, W. J. (2008). Perfect metamaterial absorber. Physical review letters, 100(20), 207402.
  • Lin, B. Q., Da, X. Y., Wu, J. L., Li, W., Fang, Y. W., & Zhu, Z. H. (2016). Ultra‐wideband and high‐efficiency cross polarization converter based on anisotropic metasurface. Microwave and optical technology letters, 58(10), 2402-2405.
  • Grady, N. K., Heyes, J. E., Chowdhury, D. R., Zeng, Y., Reiten, M. T., Azad, A. K., & Chen, H. T. (2013). Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science, 340(6138), 1304-1307.
  • Cheng, Y. Z., Fang, C., Mao, X. S., Gong, R. Z., & Wu, L. (2016). Design of an ultrabroadband and high-efficiency reflective linear polarization convertor at optical frequency. IEEE Photonics Journal, 8(6), 1-9.
  • Ozturk, G., Hasar, U. C., Bute, M., & Ertugrul, M. (2020). Determination of constitutive parameters of strong-coupled bianisotropic metamaterials using oblique incidence scattering parameters. IEEE Transactions on Antennas and Propagation, 69(2), 918-927.
  • Hasar, U. C., & Bute, M. (2020). Method for retrieval of electromagnetic properties of inhomogeneous reciprocal chiral metamaterials. IEEE Transactions on Antennas and Propagation, 68(7), 5714-5717.
  • Lai., S., Wu, Y., & Gu, W., (2021). Design of a Transparent Metamaterial Cross Polarization Converter With Large Incident Angle Range. IEEE Photonics Journal, 13(4), 1-5.
  • Qiao, Q., Wang, Y., Yang, G., Fu, Y., & Liu, Y. (2021). Broadband of linear-to-linear and double-band of linear-to-circular polarization converter based on a graphene sheet with a π-shaped hollow array. Optical Materials Express, 11(9), 2952-2965.
  • Chen, H. Y., Wang, J. F., Ma, H., Qu, S. B., Zhang, J. Q., Xu, Z., & Zhang, A. X. (2015). Broadband perfect polarization conversion metasurfaces. Chinese Physics B, 24(1), 014201.
  • Huang, X., Chen, J., & Yang, H. (2017). High-efficiency wideband reflection polarization conversion metasurface for circularly polarized waves. Journal of Applied Physics, 122(4), 043102.
  • Matrosov, S. Y., Clark, K. A., Martner, B. E., & Tokay, A. (2002). X-band polarimetric radar measurements of rainfall. Journal of Applied Meteorology, 41(9), 941-952.
  • Huque, M. T. I. U., Hosain, M. K., Islam, M. S., & Chowdhury, M. A. (2011). Design and performance analysis of microstrip array antennas with optimum parameters for X-band applications. International Journal of Advanced Computer Science and Applications, 2(4).
  • Hirose, M., Ishizone, T., & Komiyama, K. (2004). Antenna pattern measurements using photonic sensor for planar near-field measurement at X band. IEICE Transactions on Communications, 87(3), 727-734.
  • Lončar, J., Grbic, A., & Hrabar, S. (2018). A Reflective Polarization Converting Metasurface at ${X} $-Band Frequencies. IEEE Transactions on Antennas and Propagation, 66(6), 3213-3218.
There are 19 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Gökhan Öztürk 0000-0001-8106-0053

Publication Date March 31, 2022
Published in Issue Year 2022

Cite

APA Öztürk, G. (2022). Metasurface Based Reflection Type Linear Polarization Conversion for X Band Applications. Avrupa Bilim Ve Teknoloji Dergisi(34), 773-777. https://doi.org/10.31590/ejosat.1086520