Research Article
BibTex RIS Cite

Sonlu Eleman Lomber Omurga Modelinin PEEK-Çubuk Sabitleme Sistemleri Üzerindeki Etkisi

Year 2022, , 783 - 786, 31.03.2022
https://doi.org/10.31590/ejosat.1086952

Abstract

Ortopedik sabitleme cihazları omurga rahatsızlıklarının tedavisinde kullanılmaktadır. Özel sabitleme cihazları omurga rahatsızlıklarının ve deformitelerinin etkilerini azaltmak ve hastaların nörolojik sırt ağrılarını hafifletmek için geliştirilmektedir. Bu çalışmada adolesan idiyopatik bir hastanın omurgasının sonlu eleman modeli elde edilmiştir. Titanyum ve polietereterketon (PEEK) omurga implant sistemleri stres dağılımları göz önüne alınarak karşılaştırılmıştır. Sonlu eleman lomber omurga modeli L2’den L5’e kadar bilgisayarlı tomografi verilerinden elde edilmiştir. Üç-boyutlu omurga modeli dört tane lomber omurundan, üç tane omurlararası diskten, altı tane faset eklemden ve bunlara karşılık gelen ligamentlerden oluşmaktadır. L2-L5 lomber modele yükleme ve sınır koşulları uygulanmıştır. Model üzerinde uygulanan yüklere ve eğilme momentlerine göre gerilme dağılımları, özellikle omurlararası disklerde ve vida-çubuk implant sistemleri üzerindeki etkileri titanyum ve PEEK-tabanlı sabitleme cihazlarının her ikisi için de değerlendirilmiştir. Disk yapıları ayrıca füzyon ameliyatlarının operasyon sonrası etkileri olarak rapor edilen komşu segment hastalığının etkileri açısından da araştırılmıştır. İmplantsız ve farklı sabitleme cihazlarının olduğu sistemlerdeki simülasyon işlemleri için Ansys programı kullanılmıştır. Farklı sabitleme sistemleri arasında yapılan karşılaştırmalı araştırma, PEEK-tabanlı sabitleme sisteminde daha düşük gerilme dağılımı değerlerinin olduğunu göstermiştir. Buna ek olarak, PEEK-tabanlı sabitleme sisteminde daha düşük toplam deformasyon ve eşdeğer gerilme değerleri, özellikle L3-L4 ve L4-L5 omurlararası disklerde kaydedilmiştir. Ayrıca her iki omurga implant sistemi, bütün omurga modeli üzerindeki toplam yükleme stresinin azalmasına imkan vermiştir. PEEK-tabanlı omurga implant sisteminin diskler ve ligamentler üzerindeki yükü önemli ölçüde azalttığı, ve de titanyum omur implant sistemi ile karşılaştırıldığında stres değerlerinin azaltılmasında ve yük paylaşımında daha iyi bir seçenek olduğu sonucuna varılmıştır.

References

  • F. Altaf, A. Gibson, Z. Dannawi, and H. Noordeen, “Adolescent idiopathic scoliosis,” BMJ, vol. 346, no. May, p. 5, 2013.
  • J. P. Little, M. T. Izatt, R. D. Labrom, G. N. Askin, and C. J. Adam, “An FE investigation simulating intra-operative corrective forces applied to correct scoliosis deformity,” Scoliosis, vol. 8, no. 1, p. 9, 2013.
  • J. Zheng, Y. Yang, S. Lou, D. Zhang, and S. Liao, “Construction and validation of a three-dimensional finite element model of degenerative scoliosis,” J. Orthop. Surg. Res., vol. 10, no. 1, pp. 1–7, 2015.
  • S. Kotwal, M. Pumberger, A. Hughes, F. Girardi. “Degenerative Scoliosis: A Review”, HSSJ, vol.7, 257-264, 2011.
  • Z. Gong, Z. Chen, Z. Feng, Y. Cao, C. Jiang, and X. Jiang, “Finite element analysis of 3 posterior fixation techniques in the lumbar spine,” Orthopedics, vol. 37, no. 5, pp. 441–448, 2014.
  • C. Chen, C. Huang, and S. Shih, “Biomechanical evaluation of a new pedicle screw-based posterior dynamic stabilization device-a finite element study”, BMC Musculoskeletal Disorders, vol. 16, no. 81, 2017.
  • C. Herren, A. Beckmann, S. Meyer, M. Pishnamaz, M. Mundt, R. Sobottke, A. Prescher, M. Stoffel, B. Merkert, P. Kobbe, H. Pape, P. Eysel, J. Siewe, “Biomechanical testing of a PEEK-based dynamic instrumentation device in a lumbar spine model”, Clinical Biomechanics, vol. 44, no. 67-74, 2017.
  • A. A. White, M. M. Panjabi, “Clinical Biomechanics of The Spine”, J. B. Lippincott Company, Second Edition, 1990.
  • S. Z. Akıncı, D. Karabulut, H. K. Sürmen, O. Yaman, Y. Z. Arslan, “The Investigation of The Effect of PEEK-Rod Fixation Systems on Pedicle Screws and The Adjacent Intervertebral Discs”, 4th International Conference on Medical Devices (ICMD 2021), p.25, 10-12 June 2021, Gaziantep, Turkey.
  • S. Z. Akıncı, Sürmen H. K., Karabulut, D., S. C. Dogru, O. Yaman, Y. Z. Arslan, “Biomechanical Effect of an Implant System on Lumbar Spinal Segments”, Xth Biomechanics Congress (BioMech 2021), SS-28, p.50, 26-27 March 2021, Izmir, Turkey.
  • S. Z. Akıncı, H. K. Sürmen, D. Karabulut, O. Yaman, Y. Z. Arslan, “Construction and Validation of Functional Lumbar Spine Unit”, 2nd International Symposium of Scientific Studies (ISSRIS’22), p.1349-1351, 02-05 March 2022, Bandırma Onyedi Eylül University, Bandırma, Turkey.
  • S. Zahaf, S. Kebdani, “Biomechanical Study between the Rigid and Dynamic Fixation Systems of the Spinal Column Analyzed by the Finite Element Method”, Nano Biomedicine & Engineering, vol.9, no.2, pp. 169-183, 2017.

The Effect of PEEK-Rod Fixation Systems on Finite Element Lumbar Spine Model

Year 2022, , 783 - 786, 31.03.2022
https://doi.org/10.31590/ejosat.1086952

Abstract

Orthopedic fixation devices have been employed in the treatment of spinal diseases. Special fixation devices have been developed to decrease the effect of spinal injuries and deformities and have been used to decrease the neurologic back pain of the patients. In this study, the finite element spine model of an adolescent idiopathic scoliotic patient was constructed. The titanium spinal implant system and the system of polyetheretherketone (PEEK) were compared regarding their stress distributions. The finite element lumbar spine model from L2 to L5 vertebra was obtained from computed tomography scan data. The three-dimensional spine model consisted of four lumbar vertebrae, three intervertebral discs, six facet joints, and the corresponding ligaments. Loading and boundary conditions were applied to the L2-L5 lumbar model. According to the subjected loads and bending moments on the model, stress distributions were evaluated especially on the intervertebral discs, and the screw-rod implant systems both for the titanium and the PEEK-based fixation systems. The disc structures were also analyzed for the effects of adjacent segment disease, which has been reported as a post-operative effect of fusion surgeries. Ansys software was used for the simulation processes of the models without the implant system and the models with different fixation systems. Comparative investigation between different fixation systems showed that the stress distribution values were decreased with the PEEK-based fixation system. Moreover, lower total deformation and equivalent stress values were recorded with the PEEK-based fixation system, especially on L3-L4 and L4-L5 intervertebral discs. Furthermore, both spinal implant systems allowed to decrease the overall loading stress on the whole spine models. And it was concluded that the PEEK-based spinal implant system was considerably reduced the load on the discs and ligaments, and also appeared as a better option in stress reduction and load sharing when compared to the titanium spinal implant system.

References

  • F. Altaf, A. Gibson, Z. Dannawi, and H. Noordeen, “Adolescent idiopathic scoliosis,” BMJ, vol. 346, no. May, p. 5, 2013.
  • J. P. Little, M. T. Izatt, R. D. Labrom, G. N. Askin, and C. J. Adam, “An FE investigation simulating intra-operative corrective forces applied to correct scoliosis deformity,” Scoliosis, vol. 8, no. 1, p. 9, 2013.
  • J. Zheng, Y. Yang, S. Lou, D. Zhang, and S. Liao, “Construction and validation of a three-dimensional finite element model of degenerative scoliosis,” J. Orthop. Surg. Res., vol. 10, no. 1, pp. 1–7, 2015.
  • S. Kotwal, M. Pumberger, A. Hughes, F. Girardi. “Degenerative Scoliosis: A Review”, HSSJ, vol.7, 257-264, 2011.
  • Z. Gong, Z. Chen, Z. Feng, Y. Cao, C. Jiang, and X. Jiang, “Finite element analysis of 3 posterior fixation techniques in the lumbar spine,” Orthopedics, vol. 37, no. 5, pp. 441–448, 2014.
  • C. Chen, C. Huang, and S. Shih, “Biomechanical evaluation of a new pedicle screw-based posterior dynamic stabilization device-a finite element study”, BMC Musculoskeletal Disorders, vol. 16, no. 81, 2017.
  • C. Herren, A. Beckmann, S. Meyer, M. Pishnamaz, M. Mundt, R. Sobottke, A. Prescher, M. Stoffel, B. Merkert, P. Kobbe, H. Pape, P. Eysel, J. Siewe, “Biomechanical testing of a PEEK-based dynamic instrumentation device in a lumbar spine model”, Clinical Biomechanics, vol. 44, no. 67-74, 2017.
  • A. A. White, M. M. Panjabi, “Clinical Biomechanics of The Spine”, J. B. Lippincott Company, Second Edition, 1990.
  • S. Z. Akıncı, D. Karabulut, H. K. Sürmen, O. Yaman, Y. Z. Arslan, “The Investigation of The Effect of PEEK-Rod Fixation Systems on Pedicle Screws and The Adjacent Intervertebral Discs”, 4th International Conference on Medical Devices (ICMD 2021), p.25, 10-12 June 2021, Gaziantep, Turkey.
  • S. Z. Akıncı, Sürmen H. K., Karabulut, D., S. C. Dogru, O. Yaman, Y. Z. Arslan, “Biomechanical Effect of an Implant System on Lumbar Spinal Segments”, Xth Biomechanics Congress (BioMech 2021), SS-28, p.50, 26-27 March 2021, Izmir, Turkey.
  • S. Z. Akıncı, H. K. Sürmen, D. Karabulut, O. Yaman, Y. Z. Arslan, “Construction and Validation of Functional Lumbar Spine Unit”, 2nd International Symposium of Scientific Studies (ISSRIS’22), p.1349-1351, 02-05 March 2022, Bandırma Onyedi Eylül University, Bandırma, Turkey.
  • S. Zahaf, S. Kebdani, “Biomechanical Study between the Rigid and Dynamic Fixation Systems of the Spinal Column Analyzed by the Finite Element Method”, Nano Biomedicine & Engineering, vol.9, no.2, pp. 169-183, 2017.
There are 12 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Saliha Zeyneb Akıncı 0000-0003-2601-143X

Derya Karabulut 0000-0002-1903-9525

Hasan Kemal Sürmen 0000-0001-8045-9193

Onur Yaman 0000-0002-2038-1643

Yunus Ziya Arslan 0000-0002-1861-9368

Publication Date March 31, 2022
Published in Issue Year 2022

Cite

APA Akıncı, S. Z., Karabulut, D., Sürmen, H. K., Yaman, O., et al. (2022). The Effect of PEEK-Rod Fixation Systems on Finite Element Lumbar Spine Model. Avrupa Bilim Ve Teknoloji Dergisi(34), 783-786. https://doi.org/10.31590/ejosat.1086952