Bu çalışmada katodik ark buharlaştırma yöntemi kullanılarak üretilen ZrN kaplamaların morfolojik, yapısal, sertlik ve sürtünme-aşınma özellikleri incelenmiştir. Kaplama işlemi için endüstride soğuk iş takım çeliği olarak sıklıkla kullanılan 1.2379 (AISI D2), taban malzeme olarak seçilmiştir. Üretilen ZrN kaplamasının yüzey özellikleri optik mikroskop ile tespit edilmiştir. Kaplamada oluşan fazlar ve yönlenmeler X-Işını difraksiyonu kullanılarak analiz edilmiştir. Hem taban hem de kaplanmış malzemenin sertlikleri Vickers tipi mikrosertlik cihazı kullanılarak belirlenmiştir. Aşınma deneyleri ise bilye-disk tipi aşınma test cihazında 2 N sabit yük altında 2500 ve 5000 çevrimlerde Al2O3 aşındırıcı yüzey kullanılarak gerçekleştirilmiştir. Oluşan aşınma oranları, aşınma izlerinin optik profilometre incelemeleri neticesinde belirlenmiştir. Aşınma mekanizmaları ise, oluşan aşınma izlerinin SEM’den elde edilen görüntüleri vasıtasıyla karakterize edilmiştir. ZrN kaplamada, NaCl tipi kübik kristal kafese sahip ZrN (111) fazının baskın yoğunlukta olduğu görülmüştür. ZrN kaplamasının sertliği yaklaşık 1882 HV0,01 değerinde olduğu ve taban malzemenin sertliği 448 HV0,01 değerinde olduğu görülmüştür. Bu durumda ZrN kaplanmış malzemenin sertlik değerinin taban malzemeye nazaran yaklaşık %300 daha yüksek olduğu tespit edilmiştir. Her iki çevrimde ZrN kaplamanın aşınma performansı taban malzemeye göre daha yüksek olduğu görülmüştür. İşlemsiz malzemede baskın aşınma mekanizması plastik deformasyon ve adezif aşınma iken, ZrN kaplanmış malzemede pullanma kaynaklı soyulmaların baskın mekanizma olduğu tespit edilmiştir.
In this study, the morphological, structural, hardness and friction-wear properties of ZrN coatings produced by the cathodic arc evaporation method were investigated. 1.2379 (AISI D2), which is frequently used as a cold work tool steel in the industry, was chosen as the substarate material for coating process. The surface properties of the ZrN coating were determined using optical microscope. The phases and orientations of the coating were analyzed by X-Ray diffraction. The hardness of both the substrate and the coated material was determined using a Vickers type microhardness tester. Wear tests were carried out using Al2O3 ceramic abrader at 2500 and 5000 cycles under 2 N constant load in ball-disc type tribometer. The wear rates of materials were determined as a result of optical profilometer examinations of the wear tracks. The wear mechanisms were characterized by SEM images of the wear tracks. In the ZrN coating, it was observed that the ZrN (111) phase with a NaCl type cubic crystal lattice was dominant. It was observed that the hardness value of the ZrN coating was approximately 1882 HV0.01 and the hardness value of the substrate material was 448 HV0.01. In this case, it has been determined that the hardness value of the ZrN coated material is approximately 300% higher than the substrate material. It was observed that the wear performance of ZrN coatings was higher than the untreated material in both cycles. While the dominant wear mechanism in the untreated material was plastic deformation and adhesive wear, the flaking-induced peeling was the dominant wear mechanism in the ZrN coating.
Primary Language | Turkish |
---|---|
Subjects | Engineering |
Journal Section | Articles |
Authors | |
Publication Date | May 31, 2022 |
Published in Issue | Year 2022 |