Research Article
BibTex RIS Cite

Yapay Zeka ve Makine Öğrenmesi ile Koronavirüs Hastalığının Sınıflandırılması

Year 2022, , 6 - 9, 31.05.2022
https://doi.org/10.31590/ejosat.1091656

Abstract

Koronavirüs hastalığı son zamanların en sık görülen bulaşıcı hastalığıdır. Hastalık pandemiye dönüşmüş ve tüm dünyaya yayılmış durumda. Bu kadar tehlikeli ve bulaşıcı bir hastalığın teşhisinin doğruluğu hayati önem taşımaktadır. Bu çalışmada yapay zeka ve makine öğrenimi kullanılarak koronavirüs teşhisi konulmuştur. Ve elde edilen verilerin doğruluğu, teşhisin ne kadar doğru olduğunu ortaya koymaktadır. Bu çalışmada koronavirüs tanısının diğer hastalıkların sayısal sonuçlarına dayanılarak konulmasının nedeni, koronavirüs hastalığının 15 farklı kan testinin bulgularıyla ilişkisini araştırmak ve bu ilişkinin yaş üzerindeki olumlu ve olumsuz etkilerini gözlemlemektir. Bu çalışma bu açıdan oldukça önemlidir. 510 hastaya 15 sağlık muayenesi yapıldı. Hastaların yaşları ve 15 muayene sonuçları sayısal olarak kaydedildi. Ayrıca her hastanın koronavirüs sonucu kaydedildi. Hastanın analiz sonuçlarına göre, gerçek sonuçlar makine öğrenmesi ile karşılaştırılarak koronavirüse yakalanma olasılığı elde edildi. Çalışma sonucunda %89,6 doğruluk oranı elde edilmiştir.

References

  • Özen, I. A., & Ilhan, I. Opinion Mining in Tourism: A Study on “Cappadocia Home Cooking” Restaurant. In E. Çeltek (Ed.), Handbook of Research on Smart Technology Applications in the Tourism Industry (pp. 43-64). IGI Global, 2020.
  • Maisha Farzana, Md. Jahid Hossain Any, “Semantic Segmentation of Tumor from 3D Structural MRI using U-Net Autoencoder”, Department of Computer Science and Engineering in partial fulfillment of the requirements for the degree of B.Sc. in Computer Science and Engineering, March 2020
  • Liu W.K., Gan Z., Fleming M., Deep Learning for Regression and Classification. In: Mechanistic Data Science for STEM Education and Applications. Springer, Cham. ,2021
  • 2019,Available:https://www.bestsoftpro.com/2019/01/a-definition-of-machine-learning-ml.html

Classification of Coronavirus Disease with Artificial Intelligence and Machine Learning

Year 2022, , 6 - 9, 31.05.2022
https://doi.org/10.31590/ejosat.1091656

Abstract

Coronavirus disease is the most common contagious disease of recent times. The disease turned into a pandemic and spread throughout the world. The accuracy of the diagnosis of such a dangerous and contagious disease is of vital importance. In this study, a coronavirus diagnosis was made using artificial intelligence and machine learning, and the accuracy of the data obtained indicates how accurate the diagnosis is. The reason why the diagnosis of coronavirus was made based on the numerical results of other diseases in this study is to investigate the relationship of coronavirus disease with the findings of 15 different blood tests and to observe the positive and negative effects of this relationship on age. This study is important in this respect. 15 medical examinations were applied to 510 patients. The ages of the patients and the results of 15 examinations were recorded numerically. In addition, the coronavirus result of each patient was recorded. According to the patient's analysis results, the probability of being sick with coronavirus was obtained by comparing the real results with machine learning. As a result of the study, an accuracy rate of 89.6% was obtained.

References

  • Özen, I. A., & Ilhan, I. Opinion Mining in Tourism: A Study on “Cappadocia Home Cooking” Restaurant. In E. Çeltek (Ed.), Handbook of Research on Smart Technology Applications in the Tourism Industry (pp. 43-64). IGI Global, 2020.
  • Maisha Farzana, Md. Jahid Hossain Any, “Semantic Segmentation of Tumor from 3D Structural MRI using U-Net Autoencoder”, Department of Computer Science and Engineering in partial fulfillment of the requirements for the degree of B.Sc. in Computer Science and Engineering, March 2020
  • Liu W.K., Gan Z., Fleming M., Deep Learning for Regression and Classification. In: Mechanistic Data Science for STEM Education and Applications. Springer, Cham. ,2021
  • 2019,Available:https://www.bestsoftpro.com/2019/01/a-definition-of-machine-learning-ml.html
There are 4 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Elif Akarsu 0000-0002-0338-3209

Publication Date May 31, 2022
Published in Issue Year 2022

Cite

APA Akarsu, E. (2022). Classification of Coronavirus Disease with Artificial Intelligence and Machine Learning. Avrupa Bilim Ve Teknoloji Dergisi(36), 6-9. https://doi.org/10.31590/ejosat.1091656