Research Article
BibTex RIS Cite

Hava Yaylarında Kullanılan Polyamid 6.6 Kord Bezi ile Güçlendirilmiş Kauçuk Kompozit Yapıların Isı Transfer Özelliklerinin Araştırılması

Year 2022, , 151 - 157, 31.08.2022
https://doi.org/10.31590/ejosat.1104039

Abstract

Bu çalışmada hava süspansiyon körüklerinde kullanılan üç farklı tipteki PA 66 ile imal edilmiş kord ipleri ile güçlendirilmiş kauçuk karışımlarının ısıl yayılım, ısıl iletkenlik ve özgül ısı ölçümlerine ait deneysel çalışmalara ait sonuçlar sunulmuştur. Çalışmalar 20-160 °C arasında gerçekleştirilmiştir. Kauçuk matrisi içerisinde güçlendirme malzemesi olarak kullanılan kord ipinin tipi ve düzeni termal özellikler üzerinde önemli bir etkiye sahiptir. Kauçuk kompozit karışımlarında kullanılan elastomer miktarının da termal özellikleri etkilediği ve matris malzemesinin özelliklerine yaklaştığı görülmüştür. Kord bezi takviyeli kauçuk kompozitlerin termal yayılım değerlerinin sıcaklığa bağlı azalma yönünde eğilim göstermektedir. Kord iplerinin eksenine dik olan ısı akışı, ısı iletim hızı matrisin özellikleri ile sınırlı olup kompozitlerin termal özellikleri bu bileşenin özeliklerine yaklaşmaktadır. Kord bezlerinin ısıl termal direncinin iplik yönüne dik ilerlemesine bağlı ısıl özelliklerinden dolayı, birim uzunluktaki kord ipi için büküm sayısına bağlı olarak ısıl yayılım ve ısıl iletkenliğin arttığı görülmüştür. Elyaf yönüne paralel olan termal yayılım, elyaf yönüne dik olan termal yayılım ve matrisin termal yayılım özellikleri ile karşılaştırılmıştır. Sonuç olarak, büküm sayısının kompozit numunelerdeki basınçlı hava miktarını etkileyerek ısıl temas direncini arttırdığı ve fiber dizi yönüne dik olan etkin ısıl iletkenliği azalttığı gözlemlenmiştir.

Supporting Institution

Pega Otomotiv Süspansiyon San. ve Tic. A.Ş.

Project Number

A22YA002

Thanks

Bu çalışma için gerekli olan kompozit numunelerinin temini ve test ekipmanlarının kullanımını sağlayan Pega Otomotiv Arge Merkezi çalışanlarına teşekkür ederiz.

References

  • Abu-Zeid, M. E., Youssef, Y. A., & Abdul-Rasoul, F. A. (1986). Thermal degradation of butadiene–styrene‐based rubber. Journal of Applied Polymer Science, 31(6), 1575–1583. doi: 10.1002/app.1986.070310604
  • Alzamil, M. A., Alfaramawi, K.., Abboudy, S., & Abulnasr, L. (2018). Temperature Coefficients of Electrical Conductivity and Conduction Mechanisms in Butyl Rubber-Carbon Black Composites. Journal of Electronic Materials, 47, 1665–1672. doi: 10.1007/s11664-017-5990-y
  • Bafrnec, M., Juma, M., Toman, J., Jurčiová, J., & Kučma, A. (1999). Thermal diffusivity of rubber compounds. Plastics, Rubber and Composites Processing and Applications, 28(10), 482–486. doi: 10.1179/146580199101540051
  • Choi, S. S., & Kim, O. B. (2013). Influence of rubber and fabric cord on deformation of a fabric cord-inserted rubber composite by thermal aging. Journal of Industrial and Engineering Chemistry, 19(2), 650-654. doi: 10.1016/j.jiec.2012.09.016
  • Danilova-Tret′yak, S. M. (2016). On Thermophysical Properties of Rubbers and Their Components. Journal of Engineering Physics and Thermophysics, 89(6), 1388–1393. doi: 10.1007/s10891-016-1506-5
  • Ghoreishy, M. H. R., Naderi, G., & Pahlavan, M. (2016). An investigation into the thermal transport properties of PP/EPDM/clay nanocomposites using a new combined experimental/numerical method. Plastics, Rubber and Composites, 45(5), 229-237. doi: 10.1080/14658011.2016.1172146
  • Juma, M., & Bafrnec, M. (2000). Method of measuring thermal diffusivity of composites with thick fillers and reinforced rubbers. Journal of Reinforced Plastics and Composites, 19(13), 1024–1030. doi: 10.1106/3UG4-918L-WKMY-TRAA
  • Juma, M., & Bafrnec, M. (2006). Heat transfer properties of cord-reinforced rubber composites. Journal of Reinforced Plastics and Composites, 25(18), 1967–1975. doi: 10.1177/0731684406069924
  • Kerschbaumer, R. C., Stieger, S., Gschwandl, M., Hutterer, T., Fasching, M., Lechner, B., Meinhart, L., Hildenbrandt, J., Schrittesser, B., Fuchs, P. F., Berger, G. R., & Friesenbichler, W. (2019). Comparison of steady-state and transient thermal conductivity testing methods using different industrial rubber compounds. Polymer Testing, 80, 106-121. doi: 10.1016/j.polymertesting.2019.106121
  • Kim, W. N., & Burn, C. M. (1988). Thermal behavior, morphology, and some melt properties of blends of polycarbonate with poly(styrene‐co‐acrylonitrile) and poly(acrylonitrile-butadiene-styrene). Polymer Engineering & Science, 28(17), 1115–1125. doi: 10.1002/pen.760281706
  • Kutcherov, V., Håkansson, B., Ross, R. G., & Bäckström, G. (1992). Experimental test of theories for the effective thermal conductivity of a dispersed composite. Journal of Applied Physics, 71(4), 1732–1736. doi: 10.1063/1.351205
  • Mani, N. K., Berzins, M. A., & Turner, J. L. (2009). Laboratory Measurement of Tire Flatspot. Tire Science and Technology, 37(4), 279–301. doi: 10.2346/1.3251344
  • Nasr, G. M., Badawy, M. M., Gwaily, S. E., Shash, N. M., & Hassan, H. H. (1995). Thermophysical properties of butyl rubber loaded with different types of carbon black. Polymer Degradation and Stability, 48(2), 237-241. doi: 10.1016/0141-3910(95)00056-R
  • Poikelispää, M., Honkanen, M., Vippola, M., & Sarlin, E. (2021). Effect of carbon nanotubes and nanodiamonds on the heat storage ability of natural rubber composites. Journal of Elastomers & Plastics, 53(4), 311-322. doi: 10.1177/0095244320933977
  • Radhakrishnan, C. K., Sujith, A., & Unnikrishnan, G. (2007). Thermal behaviour of styrene butadiene rubber/poly(ethylene-co-vinyl acetate) blends. Journal of Thermal Analysis and Calorimetry, 90, 191–199. doi: 10.1007/s10973-006-7559-5
  • Siddiqui, M. O. R., & Sun, D. (2013). Finite element analysis of thermal conductivity and thermal resistance behaviour of woven fabric. Computational Materials Science, 75, 45–51. doi: 10.1016/j.commatsci.2013.04.003
  • Yang, X., Xiaofei, L., Haosheng, W., Feng, Z., Donghai, Z., & Yunfa, C. (2019). Improvement in thermal conductivity of through-plane aligned boron nitride/silicone rubber composites. Materials & Design, 165, 107580. doi: 10.1016/j.matdes.2018
  • Zhmakin, A. I. (2021). Heat Conduction Beyond the Fourier Law. Technical Physics, 66, 1-22. doi: 10.1134/S1063784221010242

Investigation of Heat Transfer Properties of Reinforced Rubber Composite Structures with Polyamide 6.6 Cord Fabric Used in Air Springs

Year 2022, , 151 - 157, 31.08.2022
https://doi.org/10.31590/ejosat.1104039

Abstract

This study presents experimental studies on thermal dissipation, thermal conductivity, and specific heat measurements of rubber mixtures reinforced with cord fabrics manufactured with three different PA 66 used in air suspension bellows. The studies were carried out between 20-160 °C. The cord fiber type and features used as reinforcement material within the rubber matrix significantly influence thermal properties. It has been observed that the amount of elastomer used in rubber composite mixtures also affects the thermal properties and approaches the properties of the matrix material. The thermal dissipation values of cord fabric reinforced rubber composites tend to decrease depending on the temperature. The heat flow perpendicular to the axis of the cord threads, the heat conduction rate is limited by the properties of the matrix, and the thermal properties of the composites approach the properties of this component. Because of the thermal properties of the progress perpendicular to the cord fiber of thermal resistance of cord fabrics, Increasing thermal conductivity and dissipation have been seen depending on the number of twists in a unit length for cord fiber. The thermal dissipation parallel to the fiber direction, the thermal dissipation perpendicular to the fiber direction and the thermal dissipation properties of the matrix were compared. As a result, it has been observed that the number of twists increases the thermal contact resistance by affecting the amount of compressed air in the composite samples and decreases the effective thermal conductivity perpendicular to the fiber array direction.

Project Number

A22YA002

References

  • Abu-Zeid, M. E., Youssef, Y. A., & Abdul-Rasoul, F. A. (1986). Thermal degradation of butadiene–styrene‐based rubber. Journal of Applied Polymer Science, 31(6), 1575–1583. doi: 10.1002/app.1986.070310604
  • Alzamil, M. A., Alfaramawi, K.., Abboudy, S., & Abulnasr, L. (2018). Temperature Coefficients of Electrical Conductivity and Conduction Mechanisms in Butyl Rubber-Carbon Black Composites. Journal of Electronic Materials, 47, 1665–1672. doi: 10.1007/s11664-017-5990-y
  • Bafrnec, M., Juma, M., Toman, J., Jurčiová, J., & Kučma, A. (1999). Thermal diffusivity of rubber compounds. Plastics, Rubber and Composites Processing and Applications, 28(10), 482–486. doi: 10.1179/146580199101540051
  • Choi, S. S., & Kim, O. B. (2013). Influence of rubber and fabric cord on deformation of a fabric cord-inserted rubber composite by thermal aging. Journal of Industrial and Engineering Chemistry, 19(2), 650-654. doi: 10.1016/j.jiec.2012.09.016
  • Danilova-Tret′yak, S. M. (2016). On Thermophysical Properties of Rubbers and Their Components. Journal of Engineering Physics and Thermophysics, 89(6), 1388–1393. doi: 10.1007/s10891-016-1506-5
  • Ghoreishy, M. H. R., Naderi, G., & Pahlavan, M. (2016). An investigation into the thermal transport properties of PP/EPDM/clay nanocomposites using a new combined experimental/numerical method. Plastics, Rubber and Composites, 45(5), 229-237. doi: 10.1080/14658011.2016.1172146
  • Juma, M., & Bafrnec, M. (2000). Method of measuring thermal diffusivity of composites with thick fillers and reinforced rubbers. Journal of Reinforced Plastics and Composites, 19(13), 1024–1030. doi: 10.1106/3UG4-918L-WKMY-TRAA
  • Juma, M., & Bafrnec, M. (2006). Heat transfer properties of cord-reinforced rubber composites. Journal of Reinforced Plastics and Composites, 25(18), 1967–1975. doi: 10.1177/0731684406069924
  • Kerschbaumer, R. C., Stieger, S., Gschwandl, M., Hutterer, T., Fasching, M., Lechner, B., Meinhart, L., Hildenbrandt, J., Schrittesser, B., Fuchs, P. F., Berger, G. R., & Friesenbichler, W. (2019). Comparison of steady-state and transient thermal conductivity testing methods using different industrial rubber compounds. Polymer Testing, 80, 106-121. doi: 10.1016/j.polymertesting.2019.106121
  • Kim, W. N., & Burn, C. M. (1988). Thermal behavior, morphology, and some melt properties of blends of polycarbonate with poly(styrene‐co‐acrylonitrile) and poly(acrylonitrile-butadiene-styrene). Polymer Engineering & Science, 28(17), 1115–1125. doi: 10.1002/pen.760281706
  • Kutcherov, V., Håkansson, B., Ross, R. G., & Bäckström, G. (1992). Experimental test of theories for the effective thermal conductivity of a dispersed composite. Journal of Applied Physics, 71(4), 1732–1736. doi: 10.1063/1.351205
  • Mani, N. K., Berzins, M. A., & Turner, J. L. (2009). Laboratory Measurement of Tire Flatspot. Tire Science and Technology, 37(4), 279–301. doi: 10.2346/1.3251344
  • Nasr, G. M., Badawy, M. M., Gwaily, S. E., Shash, N. M., & Hassan, H. H. (1995). Thermophysical properties of butyl rubber loaded with different types of carbon black. Polymer Degradation and Stability, 48(2), 237-241. doi: 10.1016/0141-3910(95)00056-R
  • Poikelispää, M., Honkanen, M., Vippola, M., & Sarlin, E. (2021). Effect of carbon nanotubes and nanodiamonds on the heat storage ability of natural rubber composites. Journal of Elastomers & Plastics, 53(4), 311-322. doi: 10.1177/0095244320933977
  • Radhakrishnan, C. K., Sujith, A., & Unnikrishnan, G. (2007). Thermal behaviour of styrene butadiene rubber/poly(ethylene-co-vinyl acetate) blends. Journal of Thermal Analysis and Calorimetry, 90, 191–199. doi: 10.1007/s10973-006-7559-5
  • Siddiqui, M. O. R., & Sun, D. (2013). Finite element analysis of thermal conductivity and thermal resistance behaviour of woven fabric. Computational Materials Science, 75, 45–51. doi: 10.1016/j.commatsci.2013.04.003
  • Yang, X., Xiaofei, L., Haosheng, W., Feng, Z., Donghai, Z., & Yunfa, C. (2019). Improvement in thermal conductivity of through-plane aligned boron nitride/silicone rubber composites. Materials & Design, 165, 107580. doi: 10.1016/j.matdes.2018
  • Zhmakin, A. I. (2021). Heat Conduction Beyond the Fourier Law. Technical Physics, 66, 1-22. doi: 10.1134/S1063784221010242
There are 18 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Hasan Kasım 0000-0002-3024-5207

Project Number A22YA002
Publication Date August 31, 2022
Published in Issue Year 2022

Cite

APA Kasım, H. (2022). Hava Yaylarında Kullanılan Polyamid 6.6 Kord Bezi ile Güçlendirilmiş Kauçuk Kompozit Yapıların Isı Transfer Özelliklerinin Araştırılması. Avrupa Bilim Ve Teknoloji Dergisi(38), 151-157. https://doi.org/10.31590/ejosat.1104039