Research Article
BibTex RIS Cite

Geçmişin ve Geleceğin Yapı Malzemesi Olarak Ahşap: Yapı Mühendisliği Çerçevesinde Bir İnceleme

Year 2022, , 298 - 304, 31.05.2022
https://doi.org/10.31590/ejosat.1108072

Abstract

Ahşap, inşa etmekte kullanılan en eski yapı malzemelerinden birisidir. Doğal bir malzeme olması, kolaylıkla temin edilebilmesi, çekme gerilmelerini karşılayabilmesi, ağırlığına oranla taşıma gücünün yüksek olması gibi çeşitli avantajları onu alternatiflerinden farklı bir yere koymaktadır. Bu özellikleri ile ahşap, endüstri devrimine kadar yapı kültüründe önemli bir yere sahipti. Betonarme ve çelik inşaatlarındaki gelişmeler ahşabın popülerliğinin yitirilmesine sebebiyet verse de, endüstriyel ahşap ürünlerin geliştirilmesi ve yapı tasarım yaklaşımlarında çevreye duyarlı yapı inşa etme arzusu gibi etkilerle ahşap yeniden gündeme gelmiştir. Bu çalışmada, ahşabın günümüzdeki ve gelecekteki yerini anlamak için ahşap yapıların tarihsel gelişimi incelenmiştir. Ahşap yapı sistemlerindeki çeşitlilikler vurgulanarak, ahşabın yönetmelikler ve standartlardaki yeri irdelenmiştir. Ahşap yapıların geleceği ile modern tasarım ilkeleri için çeşitli öneri ve değerlendirmeler yapılmıştır.

References

  • Smith, I., & Snow, M. A. (2008). Timber: An ancient construction material with a bright future. The Forestry Chronicle, 84(4), 504-510.
  • ÇALIŞKAN, Ö., MERİÇ, E., & YÜNCÜLER, M. (2019). Ahşap ve ahşap yapıların dünü, bugünü ve yarını. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 6(1), 109-118.
  • Ritter, M. A. (1990). Timber bridges: Design, construction, inspection, and maintenance. US Department of Agriculture, Forest Service, Engineering Staff.
  • Partov, D., Maślak, M., Ivanov, R., Petkov, M., Sergeev, D., & Dimitrova, A. The development of wooden bridges through the ages–a review of selected examples of heritage objects. Part 1–the milestones. Czasopismo Techniczne, 2016(Budownictwo Zeszyt 2-B 2016), 93-105. https://doi.org/10.2749/101686608783726614
  • Chen, P. S. (2008). A Study Report on an Ancient Chinese Wooden Bridge Hongqiao. Structural engineering international, 18(1), 84-87. https://doi.org/10.2749/101686608783726614
  • Nakahara, K. O. J. I., Hisatoku, T., Nagase, T., & Takahashi, Y. (2000). Earthquake response of ancient five-story pagoda structure of Horyu-Ji temple in Japan. Proceedings of the WCEE.
  • Bill, N. A. (2016). Timber bridge construction on British and Irish railways, 1840-1870: the scale of construction and factors influencing material selection. Construction History, 31(1), 75-98. https://www.jstor.org/stable/26489021
  • Crocetti, R. (2014). Timber bridges: General issues, with particular emphasis on Swedish typologies. In Internationales Holzbau-Forum IHF 2014.
  • Rhude, A. J. (1998). Structural glued laminated timber: history and early development in the United States. APT Bulletin: The Journal of Preservation Technology, 29(1), 11-17. https://doi.org/10.2307/1504543
  • Seraphin, M. (2003, January). On the origin of modern timber engineering. In Proceedings of the First International Congress on Construction History, Madrid.
  • Rhude, A. J. (1996). Structural glued laminated timber: History of its origins and early development. Forest Products Journal, 46(1), 15.
  • Sutherland, J. (2010). Revival of structural timber in Britain after 1945. Construction History, 25, 101-113. https://www.jstor.org/stable/41613962
  • Hassanieh, A., Valipour, H. R., Bradford, M. A., & Sandhaas, C. (2017). Modelling of steel-timber composite connections: Validation of finite element model and parametric study. Engineering Structures, 138, 35-49. https://doi.org/10.1016/j.engstruct.2017.02.016
  • Dias, A. M. P. G., Skinner, J., Crews, K., & Tannert, T. (2016). Timber-concrete-composites increasing the use of timber in construction. European Journal of Wood and Wood Products, 74(3), 443-451. https://doi.org/10.1007/s00107-015-0975-0
  • Gilham, P. C. (2015, April). A new look at modern timber bridges. In Structures Congress 2015 (pp. 287-298).
  • O'Born, R. (2018). Life cycle assessment of large scale timber bridges: A case study from the world’s longest timber bridge design in Norway. Transportation research part D: transport and environment, 59, 301-312. https://doi.org/10.1016/j.trd.2018.01.018
  • Lefebvre, D., & Richard, G. (2014, December). Design and construction of a 160-metre-long wood bridge in Mistissini, Quebec. In Proceeding of Internationales Holzbau-Forum (pp. 3-5).
  • Abrahamsen, R. (2017, December). Mjøstårnet-Construction of an 81 m tall timber building. In Internationales Holzbau-Forum IHF (Vol. 2017).
  • Borgström, E. (2016). Design of timber structures–structural aspects of timber construction. Swedish Forest Industries Federation, Stockholm.
  • Türk Standartları Enstitüsü. (1979). TS 647 Ahşap Yapıların Hesap ve Yapım Kuralları.
  • Afet ve Acil Durum Yönetimi Başkanlığı. (2018). Türkiye Bina Deprem Yönetmeliği.
  • Eurocode 5. European Committee for Standardization. (2004). Design of Timber Structures
  • American Wood Council’s Wood Design Standarts Committee. (2018). National Design Specification (NDS) for Wood Construction.
  • Eurocode 8. European Committee for Standardization. (2004). Design of Structures for Earthquake Resistance.
  • American Society of Civil Engineers, American National Standard. (2016). Minimum Design Loads for Buildings and Other Structures.
  • Şakar, G. & Çelik, H. K. (2021). SOLUTIONS OF SOLID TIMBER AND GLULAM BRIDGE EXAMPLE WITH DIFFERENT APPROACHES IN TURKEY . European Journal of Technique (EJT) , 11 (1) , 13-18 . https://doi.org/10.36222/ejt.712893
  • Jutila, A., & Salokangas, L. (2000). Research on and development of wooden bridges in Finland. Structural engineering international, 10(3), 182-185. https://doi.org/10.2749/101686600780481455
  • Behr, R. A., Cundy, E. J., & Goodspeed, C. H. (1990). Cost comparison of timber, steel, and prestressed concrete bridges. Journal of Structural Engineering, 116(12), 3448-3457. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:12(3448)
  • Verna, J. R., Graham Jr, J. F., Shannon, J. M., & Sanders, P. H. (1984). Timber bridges: Benefits and costs. Journal of Structural Engineering, 110(7), 1563-1571. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:7(1563)
  • Jorissen, A., & Fragiacomo, M. (2011). General notes on ductility in timber structures. Engineering structures, 33(11), 2987-2997. https://doi.org/10.1016/j.engstruct.2011.07.024
  • Plevris, N., & Triantafillou, T. C. (1992). FRP-reinforced wood as structural material. Journal of materials in Civil Engineering, 4(3), 300-317. https://doi.org/10.1061/(ASCE)0899-1561(1992)4:3(300)

Timber as a Building Material of the Past and the Future: An Investigation in the Perspective of Structural Engineering

Year 2022, , 298 - 304, 31.05.2022
https://doi.org/10.31590/ejosat.1108072

Abstract

Wood is one of the oldest building materials used in construction. Various advantages such as being a natural material, being easily available, able to withstand tensile stresses, and having a high carrying capacity compared to its weight put it in a different place from its alternatives. With these features, wood had an important place in the building culture until the industrial revolution. Although the developments in reinforced concrete and steel constructions have caused the loss of popularity of wood, it has come to the fore again due to the development of industrial wood products and the desire to build environmentally friendly structures in building design approaches. In this study, the historical development of wooden structures is examined in order to understand the present and future place of wood. By emphasizing the diversity in wooden construction systems, the place of wood in codes and standards has been examined. Various suggestions and evaluations have been made for the future of wooden structures and modern design principles.

References

  • Smith, I., & Snow, M. A. (2008). Timber: An ancient construction material with a bright future. The Forestry Chronicle, 84(4), 504-510.
  • ÇALIŞKAN, Ö., MERİÇ, E., & YÜNCÜLER, M. (2019). Ahşap ve ahşap yapıların dünü, bugünü ve yarını. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 6(1), 109-118.
  • Ritter, M. A. (1990). Timber bridges: Design, construction, inspection, and maintenance. US Department of Agriculture, Forest Service, Engineering Staff.
  • Partov, D., Maślak, M., Ivanov, R., Petkov, M., Sergeev, D., & Dimitrova, A. The development of wooden bridges through the ages–a review of selected examples of heritage objects. Part 1–the milestones. Czasopismo Techniczne, 2016(Budownictwo Zeszyt 2-B 2016), 93-105. https://doi.org/10.2749/101686608783726614
  • Chen, P. S. (2008). A Study Report on an Ancient Chinese Wooden Bridge Hongqiao. Structural engineering international, 18(1), 84-87. https://doi.org/10.2749/101686608783726614
  • Nakahara, K. O. J. I., Hisatoku, T., Nagase, T., & Takahashi, Y. (2000). Earthquake response of ancient five-story pagoda structure of Horyu-Ji temple in Japan. Proceedings of the WCEE.
  • Bill, N. A. (2016). Timber bridge construction on British and Irish railways, 1840-1870: the scale of construction and factors influencing material selection. Construction History, 31(1), 75-98. https://www.jstor.org/stable/26489021
  • Crocetti, R. (2014). Timber bridges: General issues, with particular emphasis on Swedish typologies. In Internationales Holzbau-Forum IHF 2014.
  • Rhude, A. J. (1998). Structural glued laminated timber: history and early development in the United States. APT Bulletin: The Journal of Preservation Technology, 29(1), 11-17. https://doi.org/10.2307/1504543
  • Seraphin, M. (2003, January). On the origin of modern timber engineering. In Proceedings of the First International Congress on Construction History, Madrid.
  • Rhude, A. J. (1996). Structural glued laminated timber: History of its origins and early development. Forest Products Journal, 46(1), 15.
  • Sutherland, J. (2010). Revival of structural timber in Britain after 1945. Construction History, 25, 101-113. https://www.jstor.org/stable/41613962
  • Hassanieh, A., Valipour, H. R., Bradford, M. A., & Sandhaas, C. (2017). Modelling of steel-timber composite connections: Validation of finite element model and parametric study. Engineering Structures, 138, 35-49. https://doi.org/10.1016/j.engstruct.2017.02.016
  • Dias, A. M. P. G., Skinner, J., Crews, K., & Tannert, T. (2016). Timber-concrete-composites increasing the use of timber in construction. European Journal of Wood and Wood Products, 74(3), 443-451. https://doi.org/10.1007/s00107-015-0975-0
  • Gilham, P. C. (2015, April). A new look at modern timber bridges. In Structures Congress 2015 (pp. 287-298).
  • O'Born, R. (2018). Life cycle assessment of large scale timber bridges: A case study from the world’s longest timber bridge design in Norway. Transportation research part D: transport and environment, 59, 301-312. https://doi.org/10.1016/j.trd.2018.01.018
  • Lefebvre, D., & Richard, G. (2014, December). Design and construction of a 160-metre-long wood bridge in Mistissini, Quebec. In Proceeding of Internationales Holzbau-Forum (pp. 3-5).
  • Abrahamsen, R. (2017, December). Mjøstårnet-Construction of an 81 m tall timber building. In Internationales Holzbau-Forum IHF (Vol. 2017).
  • Borgström, E. (2016). Design of timber structures–structural aspects of timber construction. Swedish Forest Industries Federation, Stockholm.
  • Türk Standartları Enstitüsü. (1979). TS 647 Ahşap Yapıların Hesap ve Yapım Kuralları.
  • Afet ve Acil Durum Yönetimi Başkanlığı. (2018). Türkiye Bina Deprem Yönetmeliği.
  • Eurocode 5. European Committee for Standardization. (2004). Design of Timber Structures
  • American Wood Council’s Wood Design Standarts Committee. (2018). National Design Specification (NDS) for Wood Construction.
  • Eurocode 8. European Committee for Standardization. (2004). Design of Structures for Earthquake Resistance.
  • American Society of Civil Engineers, American National Standard. (2016). Minimum Design Loads for Buildings and Other Structures.
  • Şakar, G. & Çelik, H. K. (2021). SOLUTIONS OF SOLID TIMBER AND GLULAM BRIDGE EXAMPLE WITH DIFFERENT APPROACHES IN TURKEY . European Journal of Technique (EJT) , 11 (1) , 13-18 . https://doi.org/10.36222/ejt.712893
  • Jutila, A., & Salokangas, L. (2000). Research on and development of wooden bridges in Finland. Structural engineering international, 10(3), 182-185. https://doi.org/10.2749/101686600780481455
  • Behr, R. A., Cundy, E. J., & Goodspeed, C. H. (1990). Cost comparison of timber, steel, and prestressed concrete bridges. Journal of Structural Engineering, 116(12), 3448-3457. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:12(3448)
  • Verna, J. R., Graham Jr, J. F., Shannon, J. M., & Sanders, P. H. (1984). Timber bridges: Benefits and costs. Journal of Structural Engineering, 110(7), 1563-1571. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:7(1563)
  • Jorissen, A., & Fragiacomo, M. (2011). General notes on ductility in timber structures. Engineering structures, 33(11), 2987-2997. https://doi.org/10.1016/j.engstruct.2011.07.024
  • Plevris, N., & Triantafillou, T. C. (1992). FRP-reinforced wood as structural material. Journal of materials in Civil Engineering, 4(3), 300-317. https://doi.org/10.1061/(ASCE)0899-1561(1992)4:3(300)
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Hüseyin Kürşat Çelik 0000-0001-9408-7116

Gökhan Şakar 0000-0003-0449-248X

Publication Date May 31, 2022
Published in Issue Year 2022

Cite

APA Çelik, H. K., & Şakar, G. (2022). Geçmişin ve Geleceğin Yapı Malzemesi Olarak Ahşap: Yapı Mühendisliği Çerçevesinde Bir İnceleme. Avrupa Bilim Ve Teknoloji Dergisi(36), 298-304. https://doi.org/10.31590/ejosat.1108072