Research Article
BibTex RIS Cite

Elektrikli Araçlar için Aynı Stator Gövdesine Sahip Asenkron Motor ile Gömülü Sürekli Mıknatıslı Senkron Motorun Karşılaştırılması ve Performans Analizi

Year 2022, , 165 - 172, 31.08.2022
https://doi.org/10.31590/ejosat.1108129

Abstract

Elektrik motorlarının, içten yanmalı motorlara kıyasla, daha verimli olmaları ve çevre dostu olmaları nedeniyle kullanımları yaygınlaşmıştır. Elektrikli araçlarda kullanılan elektrik motorları, batarya yönetim sistemleri vb. alanlarda çalışmalar gün geçtikçe artmaktadır. Bu çalışmada da elektrikli araçlarda kullanılacak elektrik motoru tasarımı ve performans analizleri yapılmıştır. Buna bağlı olarak, ilk önce Tesla Model S’de kullanılan asenkron motorun tasarım parametreleri göz önüne alınarak bir asenkron motor tasarımı yapılmıştır. Ardından, bu asenkron motorun stator gövdesi referans alınarak, elektrikli araçlarda kullanımı oldukça yaygın ve avantajlı olan gömülü sürekli mıknatıslı senkron motor tasarımı yapılmıştır. Bu motorun, hava aralığı, mıknatıs açısı, mıknatıs kalınlığı, mıknatıs genişliği ve mıknatıs tipi parametreleri ele alınarak verim ve tork dalgalılığı açısından analiz sonuçları değerlendirilmiştir. Analizler sonucunda, son tasarımın, referans asenkron motora göre verimi %4,78 oranında iyileştirilmiştir. Ayrıca elde edilen son tasarımın, ilk tasarımı yapılan gömülü sürekli mıknatıslı senkron motora göre tork dalgalılığı %55,17 oranında iyileştirilmiştir.

References

  • Ahn, H., Park, H., Kim, C., & Lee, H. (2020). A Review of State-of-the-art Techniques for PMSM Parameter Identification. Journal of Electrical Engineering and Technology, 15(3), 1177–1187. https://doi.org/10.1007/S42835-020-00398-6/TABLES/1
  • Cho, S. K., Jung, K. H., & Choi, J. Y. (2018). Design Optimization of Interior Permanent Magnet Synchronous Motor for Electric Compressors of Air-Conditioning Systems Mounted on EVs and HEVs. IEEE Transactions on Magnetics, 54(11). https://doi.org/10.1109/TMAG.2018.2849078
  • Choi, G., & Bramerdorfer, G. (2022). Comprehensive Design and Analysis of an Interior Permanent Magnet Synchronous Machine for Light-Duty Passenger EVs. IEEE Access, 10, 819–831. https://doi.org/10.1109/ACCESS.2021.3137897
  • Constantin, A. I., Dumitru, C., Tudor, E., Vasile, I., & Arsene, M. (2021, May). Studies related to the optimization of an interior permanent magnet synchronous machine designed for the electric vehicles. 2021 International Conference on Applied and Theoretical Electricity, ICATE 2021 - Proceedings. https://doi.org/10.1109/ICATE49685.2021.9465051
  • De Klerk, M. L., & Saha, A. K. (2021). A Comprehensive Review of Advanced Traction Motor Control Techniques Suitable for Electric Vehicle Applications. IEEE Access, 9, 125080–125108. https://doi.org/10.1109/ACCESS.2021.3110736
  • Gürbüz, Y., & Kulaksiz, A. A. (2016). Elektrikli Araçlar ile Klasik İçten Yanmalı Motorlu Araçların Çeşitli Yönlerden Karşılaştırılması. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 6(2), 117–125. https://doi.org/10.17714/GUFBED.2016.06.011
  • Hashemnia, N., & Asaei, B. (2008a, September). Comparative study of using different electric motors in the electric vehicles. Proceedings of the 2008 International Conference on Electrical Machines, ICEM’08. https://doi.org/10.1109/ICELMACH.2008.4800157
  • Hashemnia, N., & Asaei, B. (2008b). Comparative study of using different electric motors in the electric vehicles. Proceedings of the 2008 International Conference on Electrical Machines, ICEM’08, 1–5. https://doi.org/10.1109/ICELMACH.2008.4800157
  • Jeong, M.-J., Lee, K.-B., Pyo, H.-J., Nam, D.-W., Kim, W.-H., Jeong, M.-J. ;, Lee, K.-B. ;, Pyo, H.-J. ;, Nam, D.-W. ;, & Kim, W.-H. A. (2021). A Study on the Shape of the Rotor to Improve the Performance of the Spoke-Type Permanent Magnet Synchronous Motor. Energies, 14(13), 3758. https://doi.org/10.3390/EN14133758
  • Keskin Arabul, F., Senol, I., & Oner, Y. (2020). Performance Analysis of Axial-Flux Induction Motor with Skewed Rotor. Energies, 13(19), 4991. https://doi.org/10.3390/EN13194991
  • Keskin, F. (2014). Yakıt pilli-bataryalı hibrid bir elektrikli araçta enerji yönetiminin sağlanması. Yildiz Techincal University.
  • Kurnaz Araz, H., & Yilmaz, M. (2020). Elektrikli araçlar için mıknatıs oranı ve moment titreşimi azaltılmış yüksek verimli sürekli mıknatıslı senkron motor tasarım süreci ve gerçeklenmesi. Journal of the Faculty of Engineering and Architecture of Gazi University, 35(2), 1089–1109.
  • Lulhe, A. M., & Date, T. N. (2016). A technology review paper for drives used in electrical vehicle (EV) & hybrid electrical vehicles (HEV). 2015 International Conference on Control Instrumentation Communication and Computational Technologies, ICCICCT 2015, 632–636. https://doi.org/10.1109/ICCICCT.2015.7475355
  • Nugraha, Y. U., Asfani, D. A., Yulistya Negara, I. M., Aziz, M., & Yuniarto, M. N. (2021). Technology Review of Electric Motor for Hybrid-Electric Vehicle. IEEE Region 10 Annual International Conference, Proceedings/TENCON, 2021-December, 777–781. https://doi.org/10.1109/TENCON54134.2021.9707371
  • Patil, M. S., & Dhamal, S. S. (2019). A Detailed Motor Selection for Electric Vehicle Traction System. Proceedings of the 3rd International Conference on I-SMAC IoT in Social, Mobile, Analytics and Cloud, I-SMAC 2019, 679–684. https://doi.org/10.1109/I-SMAC47947.2019.9032616
  • Pindoriya, R. M., Rajpurohit, B. S., Kumar, R., & Srivastava, K. N. (2018). Comparative analysis of permanent magnet motors and switched reluctance motors capabilities for electric and hybrid electric vehicles. 2018 IEEMA Engineer Infinite Conference, ETechNxT 2018, 1–5. https://doi.org/10.1109/ETECHNXT.2018.8385282
  • Ramesh, P., & Lenin, N. C. (2019). High Power Density Electrical Machines for Electric Vehicles-Comprehensive Review Based on Material Technology. IEEE Transactions on Magnetics, 55(11). https://doi.org/10.1109/TMAG.2019.2929145
  • Seol, H. S., Jeong, T. C., Jun, H. W., Lee, J., & Kang, D. W. (2017). Design of 3-Times Magnetizer and Rotor of Spoke-Type PMSM Considering Post-Assembly Magnetization. IEEE Transactions on Magnetics, 53(11), 1–5. https://doi.org/10.1109/TMAG.2017.2707593
  • Shokri, S. ., Ardebili, M. ., & Izadfar, H. R. (2008). Air gap length evaluation in interior permanent magnet synchronous motor. European Journal of Scientific Research, 19(4), 691–699.
  • Tang, Y. (2012). Induction motor lamination design (Patent No. US8154167B2). United States Patent. https://patents.google.com/patent/US8154167
  • Texas Instruments. (1997). Digital Signal Processing Solution for Permanent Magnet Synchronous Motor.
  • Thomas, R., Garbuio, L., Gerbaud, L., & Chazal, H. (2020). Modeling and design analysis of the Tesla Model S induction motor. Proceedings - 2020 International Conference on Electrical Machines, ICEM 2020, 495–501. https://doi.org/10.1109/ICEM49940.2020.9270646
  • Un-Noor, F., Padmanaban, S., Mihet-Popa, L., Mollah, M. N., & Hossain, E. (2017). A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development. Energies, 10(8), 1217. https://doi.org/10.3390/EN10081217
  • Xu, Y., Ai, M., Xu, Z., Liu, W., & Wang, Y. (2020a, October). Analysis of Interior Permanent Magnet Synchronous Motor Used for Electric Vehicles Based on Power Matching and Driving Conditions. 2020 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices, ASEMD 2020. https://doi.org/10.1109/ASEMD49065.2020.9276276
  • Xu, Y., Ai, M., Xu, Z., Liu, W., & Wang, Y. (2020b, October 16). Analysis of Interior Permanent Magnet Synchronous Motor Used for Electric Vehicles Based on Power Matching and Driving Conditions. 2020 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices, ASEMD 2020. https://doi.org/10.1109/ASEMD49065.2020.9276276
  • Xu, Y., Ai, M., Xu, Z., Liu, W., & Wang, Y. (2021). Research on Interior Permanent Magnet Synchronous Motor Based on Performance Matching of Electric Bus. IEEE Transactions on Applied Superconductivity, 31(8). https://doi.org/10.1109/TASC.2021.3091062
  • Yang, Z., Shang, F., Brown, I. P., & Krishnamurthy, M. (2015). Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications. IEEE Transactions on Transportation Electrification, 1(3), 245–254. https://doi.org/10.1109/TTE.2015.2470092
  • Zhang, X., Zeng, L., & Pei, R. (2018). Designing and Comparison of Permanent Magnet Synchronous Reluctance Motors and Conventional Motors in Electric Vehicles. ICEMS 2018 - 2018 21st International Conference on Electrical Machines and Systems, 202–205. https://doi.org/10.23919/ICEMS.2018.8549102

A Comparison between IM and IPMSM with Same Stator Core for EV and Performance Analysis of IPMSM

Year 2022, , 165 - 172, 31.08.2022
https://doi.org/10.31590/ejosat.1108129

Abstract

Electric motors are widely used since they are more efficient and environmentally friendly compared to internal combustion engines. Studies in the fields of electric motors and battery management systems etc. used in electric vehicles are increasing day by day. In this study, electric motor design and performance analyzes to be used in electric vehicles are made. Accordingly, firstly, an induction motor design is carried out by considering the design parameters of the induction motor used in Tesla Model S. Then, by taking the stator core of this induction motor as a reference, an interior permanent magnet synchronous motor design, which is very common and advantageous in electric vehicles, is designed. By considering the air gap, magnet angle, magnet thickness, magnet width and magnet type parameters of this motor, the results of analyzes are evaluated in terms of efficiency and torque ripple. As a result of analyzes, efficiency of the final design has been improved by 4.78% compared to the reference induction motor. In addition, the torque ripple of the final design has been improved by 55.17% compared to the initial design of the interior permanent magnet synchronous motor.

References

  • Ahn, H., Park, H., Kim, C., & Lee, H. (2020). A Review of State-of-the-art Techniques for PMSM Parameter Identification. Journal of Electrical Engineering and Technology, 15(3), 1177–1187. https://doi.org/10.1007/S42835-020-00398-6/TABLES/1
  • Cho, S. K., Jung, K. H., & Choi, J. Y. (2018). Design Optimization of Interior Permanent Magnet Synchronous Motor for Electric Compressors of Air-Conditioning Systems Mounted on EVs and HEVs. IEEE Transactions on Magnetics, 54(11). https://doi.org/10.1109/TMAG.2018.2849078
  • Choi, G., & Bramerdorfer, G. (2022). Comprehensive Design and Analysis of an Interior Permanent Magnet Synchronous Machine for Light-Duty Passenger EVs. IEEE Access, 10, 819–831. https://doi.org/10.1109/ACCESS.2021.3137897
  • Constantin, A. I., Dumitru, C., Tudor, E., Vasile, I., & Arsene, M. (2021, May). Studies related to the optimization of an interior permanent magnet synchronous machine designed for the electric vehicles. 2021 International Conference on Applied and Theoretical Electricity, ICATE 2021 - Proceedings. https://doi.org/10.1109/ICATE49685.2021.9465051
  • De Klerk, M. L., & Saha, A. K. (2021). A Comprehensive Review of Advanced Traction Motor Control Techniques Suitable for Electric Vehicle Applications. IEEE Access, 9, 125080–125108. https://doi.org/10.1109/ACCESS.2021.3110736
  • Gürbüz, Y., & Kulaksiz, A. A. (2016). Elektrikli Araçlar ile Klasik İçten Yanmalı Motorlu Araçların Çeşitli Yönlerden Karşılaştırılması. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 6(2), 117–125. https://doi.org/10.17714/GUFBED.2016.06.011
  • Hashemnia, N., & Asaei, B. (2008a, September). Comparative study of using different electric motors in the electric vehicles. Proceedings of the 2008 International Conference on Electrical Machines, ICEM’08. https://doi.org/10.1109/ICELMACH.2008.4800157
  • Hashemnia, N., & Asaei, B. (2008b). Comparative study of using different electric motors in the electric vehicles. Proceedings of the 2008 International Conference on Electrical Machines, ICEM’08, 1–5. https://doi.org/10.1109/ICELMACH.2008.4800157
  • Jeong, M.-J., Lee, K.-B., Pyo, H.-J., Nam, D.-W., Kim, W.-H., Jeong, M.-J. ;, Lee, K.-B. ;, Pyo, H.-J. ;, Nam, D.-W. ;, & Kim, W.-H. A. (2021). A Study on the Shape of the Rotor to Improve the Performance of the Spoke-Type Permanent Magnet Synchronous Motor. Energies, 14(13), 3758. https://doi.org/10.3390/EN14133758
  • Keskin Arabul, F., Senol, I., & Oner, Y. (2020). Performance Analysis of Axial-Flux Induction Motor with Skewed Rotor. Energies, 13(19), 4991. https://doi.org/10.3390/EN13194991
  • Keskin, F. (2014). Yakıt pilli-bataryalı hibrid bir elektrikli araçta enerji yönetiminin sağlanması. Yildiz Techincal University.
  • Kurnaz Araz, H., & Yilmaz, M. (2020). Elektrikli araçlar için mıknatıs oranı ve moment titreşimi azaltılmış yüksek verimli sürekli mıknatıslı senkron motor tasarım süreci ve gerçeklenmesi. Journal of the Faculty of Engineering and Architecture of Gazi University, 35(2), 1089–1109.
  • Lulhe, A. M., & Date, T. N. (2016). A technology review paper for drives used in electrical vehicle (EV) & hybrid electrical vehicles (HEV). 2015 International Conference on Control Instrumentation Communication and Computational Technologies, ICCICCT 2015, 632–636. https://doi.org/10.1109/ICCICCT.2015.7475355
  • Nugraha, Y. U., Asfani, D. A., Yulistya Negara, I. M., Aziz, M., & Yuniarto, M. N. (2021). Technology Review of Electric Motor for Hybrid-Electric Vehicle. IEEE Region 10 Annual International Conference, Proceedings/TENCON, 2021-December, 777–781. https://doi.org/10.1109/TENCON54134.2021.9707371
  • Patil, M. S., & Dhamal, S. S. (2019). A Detailed Motor Selection for Electric Vehicle Traction System. Proceedings of the 3rd International Conference on I-SMAC IoT in Social, Mobile, Analytics and Cloud, I-SMAC 2019, 679–684. https://doi.org/10.1109/I-SMAC47947.2019.9032616
  • Pindoriya, R. M., Rajpurohit, B. S., Kumar, R., & Srivastava, K. N. (2018). Comparative analysis of permanent magnet motors and switched reluctance motors capabilities for electric and hybrid electric vehicles. 2018 IEEMA Engineer Infinite Conference, ETechNxT 2018, 1–5. https://doi.org/10.1109/ETECHNXT.2018.8385282
  • Ramesh, P., & Lenin, N. C. (2019). High Power Density Electrical Machines for Electric Vehicles-Comprehensive Review Based on Material Technology. IEEE Transactions on Magnetics, 55(11). https://doi.org/10.1109/TMAG.2019.2929145
  • Seol, H. S., Jeong, T. C., Jun, H. W., Lee, J., & Kang, D. W. (2017). Design of 3-Times Magnetizer and Rotor of Spoke-Type PMSM Considering Post-Assembly Magnetization. IEEE Transactions on Magnetics, 53(11), 1–5. https://doi.org/10.1109/TMAG.2017.2707593
  • Shokri, S. ., Ardebili, M. ., & Izadfar, H. R. (2008). Air gap length evaluation in interior permanent magnet synchronous motor. European Journal of Scientific Research, 19(4), 691–699.
  • Tang, Y. (2012). Induction motor lamination design (Patent No. US8154167B2). United States Patent. https://patents.google.com/patent/US8154167
  • Texas Instruments. (1997). Digital Signal Processing Solution for Permanent Magnet Synchronous Motor.
  • Thomas, R., Garbuio, L., Gerbaud, L., & Chazal, H. (2020). Modeling and design analysis of the Tesla Model S induction motor. Proceedings - 2020 International Conference on Electrical Machines, ICEM 2020, 495–501. https://doi.org/10.1109/ICEM49940.2020.9270646
  • Un-Noor, F., Padmanaban, S., Mihet-Popa, L., Mollah, M. N., & Hossain, E. (2017). A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development. Energies, 10(8), 1217. https://doi.org/10.3390/EN10081217
  • Xu, Y., Ai, M., Xu, Z., Liu, W., & Wang, Y. (2020a, October). Analysis of Interior Permanent Magnet Synchronous Motor Used for Electric Vehicles Based on Power Matching and Driving Conditions. 2020 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices, ASEMD 2020. https://doi.org/10.1109/ASEMD49065.2020.9276276
  • Xu, Y., Ai, M., Xu, Z., Liu, W., & Wang, Y. (2020b, October 16). Analysis of Interior Permanent Magnet Synchronous Motor Used for Electric Vehicles Based on Power Matching and Driving Conditions. 2020 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices, ASEMD 2020. https://doi.org/10.1109/ASEMD49065.2020.9276276
  • Xu, Y., Ai, M., Xu, Z., Liu, W., & Wang, Y. (2021). Research on Interior Permanent Magnet Synchronous Motor Based on Performance Matching of Electric Bus. IEEE Transactions on Applied Superconductivity, 31(8). https://doi.org/10.1109/TASC.2021.3091062
  • Yang, Z., Shang, F., Brown, I. P., & Krishnamurthy, M. (2015). Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications. IEEE Transactions on Transportation Electrification, 1(3), 245–254. https://doi.org/10.1109/TTE.2015.2470092
  • Zhang, X., Zeng, L., & Pei, R. (2018). Designing and Comparison of Permanent Magnet Synchronous Reluctance Motors and Conventional Motors in Electric Vehicles. ICEMS 2018 - 2018 21st International Conference on Electrical Machines and Systems, 202–205. https://doi.org/10.23919/ICEMS.2018.8549102
There are 28 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Emin Tarik Kartal 0000-0002-4966-7258

Fatma Keskin Arabul 0000-0002-9573-8440

Publication Date August 31, 2022
Published in Issue Year 2022

Cite

APA Kartal, E. T., & Keskin Arabul, F. (2022). A Comparison between IM and IPMSM with Same Stator Core for EV and Performance Analysis of IPMSM. Avrupa Bilim Ve Teknoloji Dergisi(38), 165-172. https://doi.org/10.31590/ejosat.1108129