Research Article
BibTex RIS Cite

Kolemanit, Üleksit ve Tinkal Takviyeli Polyester Kompozitlerin Termofiziksel Özelliklerinin İncelenmesi

Year 2022, , 155 - 159, 31.05.2022
https://doi.org/10.31590/ejosat.1108386

Abstract

Bu araştırmada bor fabrikasından çıkan kolemanit, üleksit ve tinkal cevheri doymamış polyestere takviye edilerek kompozit malzeme elde edilmiştir. Kütlece farklı oranlarda kullanılan bu dolguların polyester kompozitin yoğunluğuna, Shore D sertliğine, ısıl iletkenlik katsayısına ve ısıl kararlılığına etkileri araştırılmıştır. Elde edilen sonuçlara göre karışımdaki bor fabrikası bileşenlerinin kütle oranı yükseldikçe polyester kompozitin yoğunluğu, sertliği, aktivasyon enerjisi ve ısıl iletkenlik katsayısı artmıştır. Kolemanit, polyester kompozitin yoğunluğunu ve Shore D sertliğini diğer dolgu maddelerine göre daha fazla arttırmıştır. Ayrıca tinkal cevheri polyester kompozitin ısıl iletkenlik katsayısını diğerlerine göre en az yükseltmiştir. Ayrıca polyester kompozitin aktivasyon enerjisi değerleri Coats-Redfern yöntemine göre kolemanit, üleksit ve tinkal cevheri olarak büyükten küçüğe doğru sıralanmıştır. Polyester kompozitlerin aktivasyon enerjilerindeki artış, termal kararlılıktaki yükselişin bir göstergesidir

References

  • S. Chocron, A. J. Carpenter, N. L. Scott, R. P. Bigger, and K. Warren, “Impact on carbon fiber composite: Ballistic tests, material tests, and computer simulations,” Int. J. Impact Eng. 131, 39–56, 2019.
  • M. A. Abtew, F. Boussu, P. Bruniaux, C. Loghin, and I. Cristian, “Ballistic impact mechanisms – A review on textiles and fibre-reinforced composites impact responses,” Compos. Struct. 223, 110966, 2019.
  • H. Ameer, S. Ahmad, Y. Nawab, Z. Ali, and T. Ullah, “9 - Natural fiber–reinforced composites for ballistic protection,” in Woodhead Publishing Series in Composites Science and Engineering, Y. Nawab, S. M. Sapuan, and K. B. T.-C. S. for B. Shaker, Eds. Woodhead Publishing. 229–248, 2021.
  • S. Dinesh et al., “Influence of wood dust fillers on the mechanical, thermal, water absorption and biodegradation characteristics of jute fiber epoxy composites,” J. Polym. Res. 27(1), 1–13, 2020.
  • C. Yanen and M. Y. Solmaz, “Ballistic tests of lightweight hybrid composites for body armor,” Mater. Test. 61(5), 425–433, 2019.
  • J. Jeremy Jeba Samuel, R. Ramadoss, K. N. Gunasekaran, K. Logesh, S. J. P. Gnanaraj, and A. A. Munaf, “Studies on mechanical properties and characterization of carbon fiber reinforced hybrid composite for aerospace application,” Mater. Today Proc., 2021.
  • J. Pruez, S. Shoukry, G. Williams, and M. Shoukry, “Lightweight Composite Materials for Heavy Duty Vehicles,” United States, 2013.
  • D. K. Jesthi and R. K. Nayak, “Improvement of mechanical properties of hybrid composites through interply rearrangement of glass and carbon woven fabrics for marine application,” Compos. Part B Eng. 168, 467–475, 2019.
  • M. P. Westman, L. S. Fifield, K. L. Simmons, S. Laddha, and T. A. Kafentzis, “Natural fiber composites: a review,” 2010.
  • S. D. S. Kopparthy and A. N. Netravali, “Review: Green composites for structural applications,” Compos. Part C. 6, 100169, 2021.
  • S. Das and S. Das, “Properties for Polymer, Metal and Ceramic Based Composite Materials,” M. C. Brabazon, Ed. Oxford: Elsevier. 815–821, 2021.
  • Q. Zhang, M. Song, Y. Xu, W. Wang, Z. Wang, and L. Zhang, “Bio-based polyesters: Recent progress and future prospects,” Prog. Polym. Sci. 120, 101430, 2021.
  • P. Madhu, M. R. Sanjay, P. Senthamaraikannan, and S. Pradeep, “Sar avanakumar SS, Yogesha B," A Rev. Synth. characterization Commer. available Nat. fibers P art-I. J Nat Fibers. 16(8), 1132–1144, 2019.
  • S. Jothibasu, S. Mohanamurugan, R. Vijay, D. Lenin Singaravelu, A. Vinod, and M. R. Sanjay, “Investigation on the mechanical behavior of areca sheath fibers/jute fibers/glass fabrics reinforced hybrid composite for light weight applications,” J. Ind. Text. 49(8), 1036–1060, 2020.
  • K. Babu N B and T. Ramesh, “Enhancement of thermal and mechanical properties of novel micro-wear debris reinforced epoxy composites,” Mater. Res. Express. 6(10), 105358, 2019.
  • R. Millati, R. B. Cahyono, T. Ariyanto, I. N. Azzahrani, R. U. Putri, and M. J. Taherzadeh, “Chapter 1 - Agricultural, Industrial, Municipal, and Forest Wastes: An Overview,” M. J. Taherzadeh, K. Bolton, J. Wong, and Z. W. A. Pandey, Eds. Elsevier. 1–22, 2019.
  • A. H. Awad and M. H. Abdellatif, “Assessment of mechanical and physical properties of LDPE reinforced with marble dust,” Compos. Part B Eng. 173, 106948, 2019.
  • S. Vigneshwaran, M. Uthayakumar, and V. Arumugaprabu, “Development and sustainability of industrial waste-based red mud hybrid composites,” J. Clean. Prod. 230, 862–868, 2019.
  • K. Yünlü, “Bor bileşikleri, sentez yöntemleri, özellikleri, uygulamaları.” Ankara: BOREN, 2016.
  • O. Gencel, W. Brostow, and C. Ozel, “An investigation on the concrete properties containing colemanite,” Int. J. Phys. Sci. 5(3), 216–225, 2010.
  • U. K. Sevim, “Colemanite ore waste concrete with low shrinkage and high split tensile strength,” Mater. Struct. 44(1), 187–193, 2011.
  • G. Guzel, O. Sivrikaya, and H. Deveci, “The use of colemanite and ulexite as novel fillers in epoxy composites: Influences on thermal and physico-mechanical properties,” Compos. Part B Eng. 100, 1–9, 2016.
  • İ. Bilici, B. Aygün, C. U. Deniz, B. Öz, M. I. Sayyed, and A. Karabulut, “Fabrication of novel neutron shielding materials: Polypropylene composites containing colemanite, tincal and ulexite,” Prog. Nucl. Energy. 141, 103954, 2021.
  • R. Orhan, E. Aydoğmuş, S. Topuz, and H. Arslanoğlu, “Investigation of thermo-mechanical characteristics of borax reinforced polyester composites,” J. Build. Eng. 42, 103051, 2021.
  • E. Aydoğmuş, H. Arslanoğlu, and M. Dağ, “Production of waste polyethylene terephthalate reinforced biocomposite with RSM design and evaluation of thermophysical properties by ANN,” J. Build. Eng. 44, 103337, 2021.
  • E. Aydoğmuş, and H. Arslanoğlu, “Kinetics of thermal decomposition of the polyester nanocomposites,” Petroleum Science and Technology. 39(13–14), 484–500, 2021.
  • E. Aydoğmuş, M. Dağ, Z. G. Yalçın, and H. Arslanoğlu, “Synthesis and characterization of EPS reinforced modified castor oil-based epoxy biocomposite,” J. Build. Eng. 47, 103897, 2022.
  • E. Aydoğmuş, “Biohybrid nanocomposite production and characterization by RSM investigation of thermal decomposition kinetics with ANN,” Biomass Conversion and Biorefinery, 2022.
  • H. Şahal, and E. Aydoğmuş, “Production and Characterization of Palm Oil Based Epoxy Biocomposite by RSM Design,” Hittite Journal of Science and Engineering. 8(4), 287-297, 2021.
  • H. Şahal, H. and E. Aydoğmuş, “Investigation of Thermophysical Properties of Polyester Composites Produced with Synthesized MSG and Nano-Alumina,” European Journal of Science and Technology. 34, 95-99, 2022.
  • M. H. Demirel, and E. Aydoğmuş, “Production and Characterization of Waste Mask Reinforced Polyester Composite,” Journal of Inonu University Health Services Vocational School. 10(1), 41-49, 2022.
  • M. H. Demirel, and E. Aydoğmuş, “Waste Polyurethane Reinforced Polyester Composite, Production and Characterization,” Journal of the Turkish Chemical Society Section A: Chemistry. 9(1), 443–452, 2022.
  • C. Yanen, and E. Aydoğmuş, “Characterization of Thermo-Physical Properties of Nanoparticle Reinforced the Polyester Nanocomposite,” Dicle University Journal of the Institute of Natural and Applied Science. 10(2), 121–132, 2021

Investigation of Thermophysical Properties of Colemanite, Ulexite, and Tincal Reinforced Polyester Composites

Year 2022, , 155 - 159, 31.05.2022
https://doi.org/10.31590/ejosat.1108386

Abstract

In this research, composite material has been obtained by reinforcing colemanite, ulexite, and tincal ore from the boron factory to unsaturated polyester. The effects of these fillers, which are used in different ratios by mass, on the density, Shore D hardness, thermal conductivity coefficient, and thermal stability of the polyester composite have been investigated. According to the results obtained, as the mass ratio of the boron factory components in the mixture raised, the density, hardness, activation energy, and thermal conductivity coefficient of the polyester composite increased. Colemanite increased the density and Shore D hardness of the polyester composite more than other fillers. Besides, tincal ore raised the thermal conductivity coefficient of the polyester composite the least compared to the others. Also, the activation energy values of the polyester composite were ordered from largest to smallest as colemanite, ulexite, and tincal ore according to Coats-Redfern method. The increase in the activation energies of polyester composites is an indication of the raise in thermal stability

References

  • S. Chocron, A. J. Carpenter, N. L. Scott, R. P. Bigger, and K. Warren, “Impact on carbon fiber composite: Ballistic tests, material tests, and computer simulations,” Int. J. Impact Eng. 131, 39–56, 2019.
  • M. A. Abtew, F. Boussu, P. Bruniaux, C. Loghin, and I. Cristian, “Ballistic impact mechanisms – A review on textiles and fibre-reinforced composites impact responses,” Compos. Struct. 223, 110966, 2019.
  • H. Ameer, S. Ahmad, Y. Nawab, Z. Ali, and T. Ullah, “9 - Natural fiber–reinforced composites for ballistic protection,” in Woodhead Publishing Series in Composites Science and Engineering, Y. Nawab, S. M. Sapuan, and K. B. T.-C. S. for B. Shaker, Eds. Woodhead Publishing. 229–248, 2021.
  • S. Dinesh et al., “Influence of wood dust fillers on the mechanical, thermal, water absorption and biodegradation characteristics of jute fiber epoxy composites,” J. Polym. Res. 27(1), 1–13, 2020.
  • C. Yanen and M. Y. Solmaz, “Ballistic tests of lightweight hybrid composites for body armor,” Mater. Test. 61(5), 425–433, 2019.
  • J. Jeremy Jeba Samuel, R. Ramadoss, K. N. Gunasekaran, K. Logesh, S. J. P. Gnanaraj, and A. A. Munaf, “Studies on mechanical properties and characterization of carbon fiber reinforced hybrid composite for aerospace application,” Mater. Today Proc., 2021.
  • J. Pruez, S. Shoukry, G. Williams, and M. Shoukry, “Lightweight Composite Materials for Heavy Duty Vehicles,” United States, 2013.
  • D. K. Jesthi and R. K. Nayak, “Improvement of mechanical properties of hybrid composites through interply rearrangement of glass and carbon woven fabrics for marine application,” Compos. Part B Eng. 168, 467–475, 2019.
  • M. P. Westman, L. S. Fifield, K. L. Simmons, S. Laddha, and T. A. Kafentzis, “Natural fiber composites: a review,” 2010.
  • S. D. S. Kopparthy and A. N. Netravali, “Review: Green composites for structural applications,” Compos. Part C. 6, 100169, 2021.
  • S. Das and S. Das, “Properties for Polymer, Metal and Ceramic Based Composite Materials,” M. C. Brabazon, Ed. Oxford: Elsevier. 815–821, 2021.
  • Q. Zhang, M. Song, Y. Xu, W. Wang, Z. Wang, and L. Zhang, “Bio-based polyesters: Recent progress and future prospects,” Prog. Polym. Sci. 120, 101430, 2021.
  • P. Madhu, M. R. Sanjay, P. Senthamaraikannan, and S. Pradeep, “Sar avanakumar SS, Yogesha B," A Rev. Synth. characterization Commer. available Nat. fibers P art-I. J Nat Fibers. 16(8), 1132–1144, 2019.
  • S. Jothibasu, S. Mohanamurugan, R. Vijay, D. Lenin Singaravelu, A. Vinod, and M. R. Sanjay, “Investigation on the mechanical behavior of areca sheath fibers/jute fibers/glass fabrics reinforced hybrid composite for light weight applications,” J. Ind. Text. 49(8), 1036–1060, 2020.
  • K. Babu N B and T. Ramesh, “Enhancement of thermal and mechanical properties of novel micro-wear debris reinforced epoxy composites,” Mater. Res. Express. 6(10), 105358, 2019.
  • R. Millati, R. B. Cahyono, T. Ariyanto, I. N. Azzahrani, R. U. Putri, and M. J. Taherzadeh, “Chapter 1 - Agricultural, Industrial, Municipal, and Forest Wastes: An Overview,” M. J. Taherzadeh, K. Bolton, J. Wong, and Z. W. A. Pandey, Eds. Elsevier. 1–22, 2019.
  • A. H. Awad and M. H. Abdellatif, “Assessment of mechanical and physical properties of LDPE reinforced with marble dust,” Compos. Part B Eng. 173, 106948, 2019.
  • S. Vigneshwaran, M. Uthayakumar, and V. Arumugaprabu, “Development and sustainability of industrial waste-based red mud hybrid composites,” J. Clean. Prod. 230, 862–868, 2019.
  • K. Yünlü, “Bor bileşikleri, sentez yöntemleri, özellikleri, uygulamaları.” Ankara: BOREN, 2016.
  • O. Gencel, W. Brostow, and C. Ozel, “An investigation on the concrete properties containing colemanite,” Int. J. Phys. Sci. 5(3), 216–225, 2010.
  • U. K. Sevim, “Colemanite ore waste concrete with low shrinkage and high split tensile strength,” Mater. Struct. 44(1), 187–193, 2011.
  • G. Guzel, O. Sivrikaya, and H. Deveci, “The use of colemanite and ulexite as novel fillers in epoxy composites: Influences on thermal and physico-mechanical properties,” Compos. Part B Eng. 100, 1–9, 2016.
  • İ. Bilici, B. Aygün, C. U. Deniz, B. Öz, M. I. Sayyed, and A. Karabulut, “Fabrication of novel neutron shielding materials: Polypropylene composites containing colemanite, tincal and ulexite,” Prog. Nucl. Energy. 141, 103954, 2021.
  • R. Orhan, E. Aydoğmuş, S. Topuz, and H. Arslanoğlu, “Investigation of thermo-mechanical characteristics of borax reinforced polyester composites,” J. Build. Eng. 42, 103051, 2021.
  • E. Aydoğmuş, H. Arslanoğlu, and M. Dağ, “Production of waste polyethylene terephthalate reinforced biocomposite with RSM design and evaluation of thermophysical properties by ANN,” J. Build. Eng. 44, 103337, 2021.
  • E. Aydoğmuş, and H. Arslanoğlu, “Kinetics of thermal decomposition of the polyester nanocomposites,” Petroleum Science and Technology. 39(13–14), 484–500, 2021.
  • E. Aydoğmuş, M. Dağ, Z. G. Yalçın, and H. Arslanoğlu, “Synthesis and characterization of EPS reinforced modified castor oil-based epoxy biocomposite,” J. Build. Eng. 47, 103897, 2022.
  • E. Aydoğmuş, “Biohybrid nanocomposite production and characterization by RSM investigation of thermal decomposition kinetics with ANN,” Biomass Conversion and Biorefinery, 2022.
  • H. Şahal, and E. Aydoğmuş, “Production and Characterization of Palm Oil Based Epoxy Biocomposite by RSM Design,” Hittite Journal of Science and Engineering. 8(4), 287-297, 2021.
  • H. Şahal, H. and E. Aydoğmuş, “Investigation of Thermophysical Properties of Polyester Composites Produced with Synthesized MSG and Nano-Alumina,” European Journal of Science and Technology. 34, 95-99, 2022.
  • M. H. Demirel, and E. Aydoğmuş, “Production and Characterization of Waste Mask Reinforced Polyester Composite,” Journal of Inonu University Health Services Vocational School. 10(1), 41-49, 2022.
  • M. H. Demirel, and E. Aydoğmuş, “Waste Polyurethane Reinforced Polyester Composite, Production and Characterization,” Journal of the Turkish Chemical Society Section A: Chemistry. 9(1), 443–452, 2022.
  • C. Yanen, and E. Aydoğmuş, “Characterization of Thermo-Physical Properties of Nanoparticle Reinforced the Polyester Nanocomposite,” Dicle University Journal of the Institute of Natural and Applied Science. 10(2), 121–132, 2021
There are 33 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Cenk Yanen 0000-0002-5092-8734

Mustafa Dağ 0000-0001-9540-3475

Ercan Aydoğmuş 0000-0002-1643-2487

Publication Date May 31, 2022
Published in Issue Year 2022

Cite

APA Yanen, C., Dağ, M., & Aydoğmuş, E. (2022). Investigation of Thermophysical Properties of Colemanite, Ulexite, and Tincal Reinforced Polyester Composites. Avrupa Bilim Ve Teknoloji Dergisi(36), 155-159. https://doi.org/10.31590/ejosat.1108386

Cited By






Physical and Chemical Properties of Organic Waste Reinforced Polyester Composites
International Journal of Advanced Natural Sciences and Engineering Researches
https://doi.org/10.59287/ijanser.536