Research Article
BibTex RIS Cite

Bor Fabrikası Bileşenlerinin Epoksi Kompozitin Termofiziksel Özelliklerine Etkisi

Year 2022, , 151 - 154, 31.05.2022
https://doi.org/10.31590/ejosat.1108402

Abstract

Bu çalışmada, kolemanit, üleksit ve tinkal takviyeli epoksi kompozitlerin yoğunluk, Shore D sertliği, aktivasyon enerjisi ve ısıl iletkenlik katsayıları incelenmiştir. Bor fabrikasında alınan bileşenler -100/200 mesh partikül boyutuna öğütülmüş ve 105 °C'de 2 saat etüvde kurutulmuş ve dolgu olarak hazırlanmıştır. Epoksi reçinesine kütlece farklı oranlarda dolgu maddeleri eklenerek kompozit malzemeler elde edilmiştir. Elde edilen kompozitlerin Shore D sertliği, aktivasyon enerjisi ve ısıl iletkenlik katsayıları dolgu maddeleri ile artmıştır. Kompozitin termofiziksel özellikleri kolemanit, üleksit ve tinkal cevherinin benzersiz yapılarına göre değişiklik göstermiştir. Örneğin bu dolgu maddeleri, üretilen kompozitin özelliklerini kullanım amacına göre geliştirmek için ekonomik yöntemler kullanılarak kullanılabilir. Elde edilen sonuçlara göre, bor fabrikası bileşenleri epoksi kompozitin yoğunluğunu, Shore D sertliğini, ısıl iletkenlik katsayısını ve ısıl kararlılığını arttırmıştır. Epoksi kompozitin termofiziksel özelliklerini arttırmada sırasıyla kolemanit, üleksit ve tinkal cevherlerinin etkili olduğu anlaşılmıştır.

References

  • N. F. Zaaba, and H. Ismail, “Polym. Plastics,” Tech. Mater. 58, 349-365, 2019.
  • S. J. Park, and M. K. Seo, “Types of Composites,” in Interface Sci. Technol., Chapter 7, 501–629, 2011.
  • Q. Qin, “Introduction to the composite and its toughening mechanisms,” Toughening Mechanisms in Composite Materials. 1-32, 2015.
  • M. Sogancioglu, A. Yucel, E. Yel, and G. Ahmetli, “Production of Epoxy Composite from the Pyrolysis Char of Washed PET Wastes,” Energy Procedia. 118, 216-220, 2017.
  • O. I. Rufai, G. I. Lawal, B. O. Bolasodun, S. I. Durowaye, and J. O. Etoh, Int. J. Chem. Molecular, Nucl. Mater. Metall. Eng. 9, 2015.
  • I. L. Ngo, and V. A. Truong, “An investigation on effective thermal conductivity of hybrid-filler polymer composites under effects of random particle distribution, particle size and thermal contact resistance,” Int. J. Heat Mass Transf. 144, 2019.
  • R. Kochetov, A. V. Korobko, and T. Andritsch, “Modelling of the thermal conductivity in polymer nanocomposites and the impact of the interface between filler and matrix,” J. Phys. D Appl. Phys. 44(39), 395-401, 2011.
  • T. F. Luo, and J. R. Lloyd, “Enhancement of thermal energy transport across graphene/graphite and polymer interfaces: a molecular dynamics study,” Adv. Funct. Mater. 22(12), 2495-2502, 2012.
  • L. Du, T. Shi, P. Chen, L. Su, J. Shen, J. Shao, and G. Liao “Optimization of through silicon via for three-dimensional integration,” Microelectron. Eng. 139, 31-38, 2015.
  • Z. Liu, T. Shi, Z. Tang, B. Sun, and G. Liao, “Using a low-temperature carbon electrode for preparing hole-conductor-free perovskite heterojunction solar cells under high relative humidity,” Nanoscale. 8(13), 7017-7023, 2016.
  • Y. Wang, C. Yang, Q.X. Pei, and Y. Zhang, “Some aspects of thermal transport across the interface between graphene and epoxy in nanocomposites,” ACS Appl. Mater. Interfaces. 8(12), 8272-8279, 2016.
  • Y. Wang, C. Yang, Y. W. Mai, and Y. Zhang, “Effect of non-covalent functionalisation on thermal and mechanical properties of graphene-polymer nanocomposites,” Carbon. 102, 311-318, 2016.
  • T. Y. Wang, and J. L. Tsai, “Investigating thermal conductivities of functionalized graphene and graphene/epoxy nanocomposites,” Comput. Mater. Sci. 122, 272-280, 2016.
  • M. Derradji, X. M. Song, and A. Q. Dayo, “Highly filled boron nitride-phthalonitrile nanocomposites for exigent thermally conductive applications,” Appl. Therm. Eng. 115, 630-636, 2017.
  • I. Jang, K.H. Shin, and I. Yang, “Enhancement of thermal conductivity of BN/epoxy composite through surface modification with silane coupling agents,” Colloids Surf. A-Physicochem. Eng. Aspects. 518, 64-72, 2017.
  • M. Uluakay, H. İnan, K. Yamanel, and N. Arhun, “Kompozit Rezinler ve Polimerizasyon Büzülmesi,” ADO Klinik Bilimler Dergisi. 5(2), 895-902, 2011.
  • I. L. Ngo, C. Byon, and B. J. Lee, “Numerical analysis for the effects of particle distribution and particle size on effective thermal conductivity of hybrid-filler polymer composites,” Int. J. Therm. Sci. 142, 42-53, 2019.
  • İ. Bilici, B. Aygün, C. U. Deniz, B. Öz, M. I. Sayyed, and A. Karabulut, “Fabrication of novel neutron shielding materials: Polypropylene composites containing colemanite, tincal and ulexite,” Progress in Nuclear Energy. 141, 2021.
  • G. Guzel, O. Sivrikaya, H. Deveci, “The use of colemanite and ulexite as novel fillers in epoxy composites: Influences on thermal and physico-mechanical properties,” Compos. Part B Eng. 100, 1-9, 2016.
  • R. Orhan, E. Aydoğmuş, S. Topuz, and H. Arslanoğlu, “Investigation of thermo-mechanical characteristics of borax reinforced polyester composites,” J. Build Eng. 42, 103051, 2021.
  • M. Dogan, S. Dogan, L. Savas, G. Ozcelik, and U. Tayfun, “Flame retardant effect of boron compounds in polymeric materials,” Compos. B. Eng. 221(1), 109088, 2021.
  • E. Aydoğmuş, H. Arslanoğlu, and M. Dağ, “Production of waste polyethylene terephthalate reinforced biocomposite with RSM design and evaluation of thermophysical properties by ANN,” J. Build. Eng. 44, 103337, 2021.
  • E. Aydoğmuş, and H. Arslanoğlu, “Kinetics of thermal decomposition of the polyester nanocomposites,” Petroleum Science and Technology. 39(13–14), 484–500, 2021.
  • E. Aydoğmuş, M. Dağ, Z. G. Yalçın, and H. Arslanoğlu, “Synthesis and characterization of EPS reinforced modified castor oil-based epoxy biocomposite,” J. Build. Eng, 47, 103897, 2022.
  • E. Aydoğmuş, “Biohybrid nanocomposite production and characterization by RSM investigation of thermal decomposition kinetics with ANN,” Biomass Conversion and Biorefinery. 2022.
  • H. Şahal, and E. Aydoğmuş, “Production and Characterization of Palm Oil Based Epoxy Biocomposite by RSM Design,” Hittite Journal of Science and Engineering. 8(4), 287-297, 2021.
  • H. Şahal, H. and E. Aydoğmuş, “Investigation of Thermophysical Properties of Polyester Composites Produced with Synthesized MSG and Nano-Alumina,” European Journal of Science and Technology. 34, 95-99, 2022.
  • M. H. Demirel, and E. Aydoğmuş, “Production and Characterization of Waste Mask Reinforced Polyester Composite,” Journal of Inonu University Health Services Vocational School. 10(1), 41-49, 2022.
  • M. H. Demirel, and E. Aydoğmuş, “Waste Polyurethane Reinforced Polyester Composite, Production and Characterization,” Journal of the Turkish Chemical Society Section A: Chemistry. 9(1), 443–452, 2022.
  • C. Yanen, and E. Aydoğmuş, “Characterization of Thermo-Physical Properties of Nanoparticle Reinforced the Polyester Nanocomposite,” Dicle University Journal of the Institute of Natural and Applied Science. 10(2), 121–132, 2021.

Effect of Boron Factory Components on Thermophysical Properties of Epoxy Composite

Year 2022, , 151 - 154, 31.05.2022
https://doi.org/10.31590/ejosat.1108402

Abstract

In this study, density, Shore D hardness, activation energy, and thermal conductivity coefficients of colemanite, ulexite, and tincal reinforced epoxy composites have been investigated. The components taken in the boron factory were ground to -100/200 mesh particle size and dried in an oven at 105 °C for 2 hours and prepared as a filler. Composite materials have been obtained by adding fillers in different proportions by mass into the epoxy resin. Shore D hardness, activation energy, and thermal conductivity coefficient of the obtained composites increased with fillers. The thermophysical properties of the composite varied according to the unique structures of colemanite, ulexite, and tincal ore. For example, these fillers can be used by using economical methods to improve the properties of the produced composite according to the intended use. According to the results obtained, boron factory components increased the density, Shore D hardness, thermal conductivity coefficient, and thermal stability of the epoxy composite. It has been understood that colemanite, ulexite, and tincal ores are effective in increasing the thermophysical properties of the epoxy composite, respectively

References

  • N. F. Zaaba, and H. Ismail, “Polym. Plastics,” Tech. Mater. 58, 349-365, 2019.
  • S. J. Park, and M. K. Seo, “Types of Composites,” in Interface Sci. Technol., Chapter 7, 501–629, 2011.
  • Q. Qin, “Introduction to the composite and its toughening mechanisms,” Toughening Mechanisms in Composite Materials. 1-32, 2015.
  • M. Sogancioglu, A. Yucel, E. Yel, and G. Ahmetli, “Production of Epoxy Composite from the Pyrolysis Char of Washed PET Wastes,” Energy Procedia. 118, 216-220, 2017.
  • O. I. Rufai, G. I. Lawal, B. O. Bolasodun, S. I. Durowaye, and J. O. Etoh, Int. J. Chem. Molecular, Nucl. Mater. Metall. Eng. 9, 2015.
  • I. L. Ngo, and V. A. Truong, “An investigation on effective thermal conductivity of hybrid-filler polymer composites under effects of random particle distribution, particle size and thermal contact resistance,” Int. J. Heat Mass Transf. 144, 2019.
  • R. Kochetov, A. V. Korobko, and T. Andritsch, “Modelling of the thermal conductivity in polymer nanocomposites and the impact of the interface between filler and matrix,” J. Phys. D Appl. Phys. 44(39), 395-401, 2011.
  • T. F. Luo, and J. R. Lloyd, “Enhancement of thermal energy transport across graphene/graphite and polymer interfaces: a molecular dynamics study,” Adv. Funct. Mater. 22(12), 2495-2502, 2012.
  • L. Du, T. Shi, P. Chen, L. Su, J. Shen, J. Shao, and G. Liao “Optimization of through silicon via for three-dimensional integration,” Microelectron. Eng. 139, 31-38, 2015.
  • Z. Liu, T. Shi, Z. Tang, B. Sun, and G. Liao, “Using a low-temperature carbon electrode for preparing hole-conductor-free perovskite heterojunction solar cells under high relative humidity,” Nanoscale. 8(13), 7017-7023, 2016.
  • Y. Wang, C. Yang, Q.X. Pei, and Y. Zhang, “Some aspects of thermal transport across the interface between graphene and epoxy in nanocomposites,” ACS Appl. Mater. Interfaces. 8(12), 8272-8279, 2016.
  • Y. Wang, C. Yang, Y. W. Mai, and Y. Zhang, “Effect of non-covalent functionalisation on thermal and mechanical properties of graphene-polymer nanocomposites,” Carbon. 102, 311-318, 2016.
  • T. Y. Wang, and J. L. Tsai, “Investigating thermal conductivities of functionalized graphene and graphene/epoxy nanocomposites,” Comput. Mater. Sci. 122, 272-280, 2016.
  • M. Derradji, X. M. Song, and A. Q. Dayo, “Highly filled boron nitride-phthalonitrile nanocomposites for exigent thermally conductive applications,” Appl. Therm. Eng. 115, 630-636, 2017.
  • I. Jang, K.H. Shin, and I. Yang, “Enhancement of thermal conductivity of BN/epoxy composite through surface modification with silane coupling agents,” Colloids Surf. A-Physicochem. Eng. Aspects. 518, 64-72, 2017.
  • M. Uluakay, H. İnan, K. Yamanel, and N. Arhun, “Kompozit Rezinler ve Polimerizasyon Büzülmesi,” ADO Klinik Bilimler Dergisi. 5(2), 895-902, 2011.
  • I. L. Ngo, C. Byon, and B. J. Lee, “Numerical analysis for the effects of particle distribution and particle size on effective thermal conductivity of hybrid-filler polymer composites,” Int. J. Therm. Sci. 142, 42-53, 2019.
  • İ. Bilici, B. Aygün, C. U. Deniz, B. Öz, M. I. Sayyed, and A. Karabulut, “Fabrication of novel neutron shielding materials: Polypropylene composites containing colemanite, tincal and ulexite,” Progress in Nuclear Energy. 141, 2021.
  • G. Guzel, O. Sivrikaya, H. Deveci, “The use of colemanite and ulexite as novel fillers in epoxy composites: Influences on thermal and physico-mechanical properties,” Compos. Part B Eng. 100, 1-9, 2016.
  • R. Orhan, E. Aydoğmuş, S. Topuz, and H. Arslanoğlu, “Investigation of thermo-mechanical characteristics of borax reinforced polyester composites,” J. Build Eng. 42, 103051, 2021.
  • M. Dogan, S. Dogan, L. Savas, G. Ozcelik, and U. Tayfun, “Flame retardant effect of boron compounds in polymeric materials,” Compos. B. Eng. 221(1), 109088, 2021.
  • E. Aydoğmuş, H. Arslanoğlu, and M. Dağ, “Production of waste polyethylene terephthalate reinforced biocomposite with RSM design and evaluation of thermophysical properties by ANN,” J. Build. Eng. 44, 103337, 2021.
  • E. Aydoğmuş, and H. Arslanoğlu, “Kinetics of thermal decomposition of the polyester nanocomposites,” Petroleum Science and Technology. 39(13–14), 484–500, 2021.
  • E. Aydoğmuş, M. Dağ, Z. G. Yalçın, and H. Arslanoğlu, “Synthesis and characterization of EPS reinforced modified castor oil-based epoxy biocomposite,” J. Build. Eng, 47, 103897, 2022.
  • E. Aydoğmuş, “Biohybrid nanocomposite production and characterization by RSM investigation of thermal decomposition kinetics with ANN,” Biomass Conversion and Biorefinery. 2022.
  • H. Şahal, and E. Aydoğmuş, “Production and Characterization of Palm Oil Based Epoxy Biocomposite by RSM Design,” Hittite Journal of Science and Engineering. 8(4), 287-297, 2021.
  • H. Şahal, H. and E. Aydoğmuş, “Investigation of Thermophysical Properties of Polyester Composites Produced with Synthesized MSG and Nano-Alumina,” European Journal of Science and Technology. 34, 95-99, 2022.
  • M. H. Demirel, and E. Aydoğmuş, “Production and Characterization of Waste Mask Reinforced Polyester Composite,” Journal of Inonu University Health Services Vocational School. 10(1), 41-49, 2022.
  • M. H. Demirel, and E. Aydoğmuş, “Waste Polyurethane Reinforced Polyester Composite, Production and Characterization,” Journal of the Turkish Chemical Society Section A: Chemistry. 9(1), 443–452, 2022.
  • C. Yanen, and E. Aydoğmuş, “Characterization of Thermo-Physical Properties of Nanoparticle Reinforced the Polyester Nanocomposite,” Dicle University Journal of the Institute of Natural and Applied Science. 10(2), 121–132, 2021.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Mustafa Dağ 0000-0001-9540-3475

Cenk Yanen 0000-0002-5092-8734

Ercan Aydoğmuş 0000-0002-1643-2487

Publication Date May 31, 2022
Published in Issue Year 2022

Cite

APA Dağ, M., Yanen, C., & Aydoğmuş, E. (2022). Bor Fabrikası Bileşenlerinin Epoksi Kompozitin Termofiziksel Özelliklerine Etkisi. Avrupa Bilim Ve Teknoloji Dergisi(36), 151-154. https://doi.org/10.31590/ejosat.1108402