Research Article
BibTex RIS Cite

Kıvrımlı Döngü Rezonatörlü Çift Bantlı Bant Geçiren Ayarlanabilir Filtre

Year 2022, , 134 - 138, 31.05.2022
https://doi.org/10.31590/ejosat.1111208

Abstract

Radyo frekanslarında (RF) kullanılabilen ayarlanabilir filtreler, ince ayarlanabilen geçiş bandı frekanslarına sahip bant geçiren filtrelerdir (BPF). Geçiş bandı frekansı dijital, mekanik veya bir control voltajı ile değiştirilebilir. İletişim sistemleri daha karmaşık hale geldikçe, ayarlanabilir BPF tasarımlarının önemi artmaktadır. Bu çalışmada, kıvrımlı döngü rezonatörlü çift bantlı bant geçiren ayarlanabilir bir filtre önerilmiştir. SVM1413 varaktör diyot kullanılarak ve kapasitans değeri kademeli olarak değiştirilerek iki farklı bantta ayarlanabilir bir bant geçiren filtre tasarımı oluşturulması amaçlanmıştır. Uygulanabilirlik ve kapasitans değer aralığı genişliği açısından SVM1413 varaktör diyot seçilmiştir. BPF, 2.5’den 3 GHz’e ve 4.2’den 4.6 GHz’e olmak üzere iki farklı frekans aralığında çalışır. BPF, dielektrik sabiti 3 alınarak 1 mm kalınlığa sahip bir Rogers RO3003 substratı üzerinde uygulanmış ve ölçülmüştür. BPF için alt tabaka 30 × 30 mm^2 boyutunda seçilmiştir. Sayısal hesaplama sonuçları, Computer Simulation Technology (CST) kullanılarak simüle edilmiş ve optimize edilmiştir. Ekleme kaybı değerleri hem bant genişliği aralığında hem de tüm kapasitans değişikliklerinde -1 dB'nin üzerindedir. Sayısal hesaplama sonuçları kullanılan kaynakların çıktıları ile karşılaştırıldığında daha iyi sonuçlar elde edilmiştir.

References

  • Montero-de-Paz, J., Oprea, I., Rymanov, V., Babiel, S., García-Muñoz, L. E., Lisauskas, A., ... & Carpintero, G. (2013). Compact modules for wireless communication systems in the E-band (71–76 GHz). Journal of Infrared, Millimeter, and Terahertz Waves, 34(3), 251-266.
  • Ozkaya, U., & Seyfi, L. (2015). Dimension optimization of microstrip patch antenna in X/Ku band via artificial neural network. Procedia-Social and Behavioral Sciences, 195, 2520-2526.
  • Palandöken, M., Rymanov, V., Stöhr, A., & Tekin, T. (2012, August). Compact metamaterial-based bias tee design for 1.55 μm waveguide-photodiode based 71–76GHz wireless transmitter. In Progress in Electromagnetics Research Symposium, PIERS.
  • Palandöken, M., & Sondas, A. (2014). Compact Metamaterial Based Bandstop Filter. Microwave Journal, 57(10).
  • Palandoken, M. (2012). Metamaterial-based compact filter design. In Metamaterial. IntechOpen.
  • Al-Yasir, Y. I., OjaroudiParchin, N., Abdulkhaleq, A., Hameed, K., Al-Sadoon, M., & Abd-Alhameed, R. (2019, July). Design, simulation and implementation of very compact dual-band microstrip bandpass filter for 4G and 5G applications. In 2019 16th international conference on synthesis, modeling, analysis and simulation methods and applications to circuit design (SMACD) (pp. 41-44). IEEE.
  • Afzali, B., Abbasi, H., Shama, F., & Dehdasht-Heydari, R. (2021). A microstrip bandpass filter with deep rejection and low insertion loss for application at 2.4 GHz useful wireless frequency. AEU-International Journal of Electronics and Communications, 138, 153811.
  • Palandoken, M., and H. Henke. "Fractal spiral resonator as magnetic metamaterial." 2009 Applied Electromagnetics Conference (AEMC). IEEE, 2009.
  • Ieu, W., Zhang, D., Lv, D., & Wu, Y. (2018). Dual-band microstrip bandpass filter with independently-tunable passbands using patch resonator. Electronics Letters, 54(10), 665-667.
  • Karthie, S., & Salivahanan, S. (2019). Fractally slotted patch resonator based compact dual-mode microstrip bandpass filter for Wireless LAN applications. AEU-International Journal of Electronics and Communications, 107, 264-274.
  • Nieto, J., & Sauleau, R. (2006, November). Miniature coplanar waveguide and microstrip stop-band filters using spiral resonators. In 2006 First European Conference on Antennas and Propagation (pp. 1-5). IEEE.
  • Al-Nuaimi, M. K. T., & Whittow, W. G. (2010, April). Compact microstrip band stop filter using SRR and CSSR: Design, simulation and results. In Proceedings of the Fourth European Conference on Antennas and Propagation (pp. 1-5). IEEE.
  • Tang, W., & Hong, J. S. (2010). Varactor-tuned dual-mode bandpass filters. IEEE Transactions on Microwave Theory and Techniques, 58(8), 2213-2219.
  • Long, J., Li, C., Cui, W., Huangfu, J., & Ran, L. (2011). A tunable microstrip bandpass filter with two independently adjustable transmission zeros. IEEE Microwave and Wireless Components Letters, 21(2), 74-76.
  • Tsai, H. Y., Huang, T. Y., & Wu, R. B. (2016). Varactor-tuned compact dual-mode tunable filter with constant passband characteristics. IEEE Transactions on Components, Packaging and Manufacturing Technology, 6(9), 1399-1407.
  • Chen, C. F., Wang, G. Y., & Li, J. J. (2018). Microstrip switchable and fully tunable bandpass filter with continuous frequency tuning range. IEEE Microwave and Wireless Components Letters, 28(6), 500-502.
  • Chen, F. C., Li, R. S., & Chen, J. P. (2018). A tunable dual-band bandpass-to-bandstop filter using pin diodes and varactors. IEEE Access, 6, 46058-46065.
  • Al-Yasir, Y. I., Parchin, N. O., Alabdallah, A., Abdulkhaleq, A. M., Abd-Alhameed, R. A., & Noras, J. M. (2019, September). Design of bandpass tunable filter for green flexible RF for 5G. In 2019 IEEE 2nd 5G World Forum (5GWF) (pp. 194-198). IEEE.

Dual-band Band-pass Tunable Filter with Meander-Line Resonator

Year 2022, , 134 - 138, 31.05.2022
https://doi.org/10.31590/ejosat.1111208

Abstract

Radio frequency (RF) that can be tunable filters are band-pass filters (BPFs) with finely tunable passband frequencies. The passband frequency can be changed digitally, mechanically, or with a control voltage. Tunable BPF designs are increasing in importance as communication systems become more complex. In this study, a dual-band band-pass tunable filter with a meander-line resonator has been proposed. It aimed to create a tunable band-pass filter design in two different bands by using the SVM1413 varactor diode and gradually changing the capacitance value. SVM1413 varactor diode has been chosen in terms of applicability and capacitance value range width. The BPF operates in two different frequency ranges, from 2.5 to 3 GHz and from 4.2 to 4.6 GHz. BPF has been implemented and measured on a Rogers RO3003 substrate with a dielectric constant of 3 and a thickness of 1 mm. The substrate for the BPF has been chosen to be 30 × 30 mm^2 in size. The numerical calculation results have been simulated and optimized using computer simulation technology (CST). The insertion loss values are above -1 dB in both bandwidth ranges and all capacitance changes. Better results have been obtained when numerical calculation results have been compared with the outputs of the sources used.

References

  • Montero-de-Paz, J., Oprea, I., Rymanov, V., Babiel, S., García-Muñoz, L. E., Lisauskas, A., ... & Carpintero, G. (2013). Compact modules for wireless communication systems in the E-band (71–76 GHz). Journal of Infrared, Millimeter, and Terahertz Waves, 34(3), 251-266.
  • Ozkaya, U., & Seyfi, L. (2015). Dimension optimization of microstrip patch antenna in X/Ku band via artificial neural network. Procedia-Social and Behavioral Sciences, 195, 2520-2526.
  • Palandöken, M., Rymanov, V., Stöhr, A., & Tekin, T. (2012, August). Compact metamaterial-based bias tee design for 1.55 μm waveguide-photodiode based 71–76GHz wireless transmitter. In Progress in Electromagnetics Research Symposium, PIERS.
  • Palandöken, M., & Sondas, A. (2014). Compact Metamaterial Based Bandstop Filter. Microwave Journal, 57(10).
  • Palandoken, M. (2012). Metamaterial-based compact filter design. In Metamaterial. IntechOpen.
  • Al-Yasir, Y. I., OjaroudiParchin, N., Abdulkhaleq, A., Hameed, K., Al-Sadoon, M., & Abd-Alhameed, R. (2019, July). Design, simulation and implementation of very compact dual-band microstrip bandpass filter for 4G and 5G applications. In 2019 16th international conference on synthesis, modeling, analysis and simulation methods and applications to circuit design (SMACD) (pp. 41-44). IEEE.
  • Afzali, B., Abbasi, H., Shama, F., & Dehdasht-Heydari, R. (2021). A microstrip bandpass filter with deep rejection and low insertion loss for application at 2.4 GHz useful wireless frequency. AEU-International Journal of Electronics and Communications, 138, 153811.
  • Palandoken, M., and H. Henke. "Fractal spiral resonator as magnetic metamaterial." 2009 Applied Electromagnetics Conference (AEMC). IEEE, 2009.
  • Ieu, W., Zhang, D., Lv, D., & Wu, Y. (2018). Dual-band microstrip bandpass filter with independently-tunable passbands using patch resonator. Electronics Letters, 54(10), 665-667.
  • Karthie, S., & Salivahanan, S. (2019). Fractally slotted patch resonator based compact dual-mode microstrip bandpass filter for Wireless LAN applications. AEU-International Journal of Electronics and Communications, 107, 264-274.
  • Nieto, J., & Sauleau, R. (2006, November). Miniature coplanar waveguide and microstrip stop-band filters using spiral resonators. In 2006 First European Conference on Antennas and Propagation (pp. 1-5). IEEE.
  • Al-Nuaimi, M. K. T., & Whittow, W. G. (2010, April). Compact microstrip band stop filter using SRR and CSSR: Design, simulation and results. In Proceedings of the Fourth European Conference on Antennas and Propagation (pp. 1-5). IEEE.
  • Tang, W., & Hong, J. S. (2010). Varactor-tuned dual-mode bandpass filters. IEEE Transactions on Microwave Theory and Techniques, 58(8), 2213-2219.
  • Long, J., Li, C., Cui, W., Huangfu, J., & Ran, L. (2011). A tunable microstrip bandpass filter with two independently adjustable transmission zeros. IEEE Microwave and Wireless Components Letters, 21(2), 74-76.
  • Tsai, H. Y., Huang, T. Y., & Wu, R. B. (2016). Varactor-tuned compact dual-mode tunable filter with constant passband characteristics. IEEE Transactions on Components, Packaging and Manufacturing Technology, 6(9), 1399-1407.
  • Chen, C. F., Wang, G. Y., & Li, J. J. (2018). Microstrip switchable and fully tunable bandpass filter with continuous frequency tuning range. IEEE Microwave and Wireless Components Letters, 28(6), 500-502.
  • Chen, F. C., Li, R. S., & Chen, J. P. (2018). A tunable dual-band bandpass-to-bandstop filter using pin diodes and varactors. IEEE Access, 6, 46058-46065.
  • Al-Yasir, Y. I., Parchin, N. O., Alabdallah, A., Abdulkhaleq, A. M., Abd-Alhameed, R. A., & Noras, J. M. (2019, September). Design of bandpass tunable filter for green flexible RF for 5G. In 2019 IEEE 2nd 5G World Forum (5GWF) (pp. 194-198). IEEE.
There are 18 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mert Demirel 0000-0001-7905-8456

Publication Date May 31, 2022
Published in Issue Year 2022

Cite

APA Demirel, M. (2022). Dual-band Band-pass Tunable Filter with Meander-Line Resonator. Avrupa Bilim Ve Teknoloji Dergisi(36), 134-138. https://doi.org/10.31590/ejosat.1111208