Research Article
BibTex RIS Cite

On the Solution of a Nonhomogeneous Fisher-Kolmogorov Equation

Year 2022, , 236 - 239, 31.08.2022
https://doi.org/10.31590/ejosat.1118288

Abstract

Bu makalede, homojen olmayan Fisher-Kolmogorov denkleminin sayısal çözümünü elde etmek için yeni bir yöntem olarak Bernoulli sıralama yöntemi tanıtılmaktadır. Fisher-Kolmogorov denkleminin üç farklı durumu için Bernoulli sıralama yöntemi kullanılmıştır. Elde edilen sayısal sonuçlar tablolar ve grafik formlarda sunulmuştur.

References

  • Adomian, G. (1995). Fisher-Kolmogrov equation, Applied Mathematics Letters, 8, 51-52. Doi: 10.1016/0893-9659(95)00010-N
  • Andreu, F., Caselles, V. & Maz´on, J.M. (2010). A Fisher–Kolmogorov equation with finite speed of propagation, Journal of Differential Equations, 248, 2548-2591. Doi: 10.1016/j.jde.2010.01.005
  • Araujo, A.L. (2014). Periodic solutions for extended Fisher–Kolmogorov and Swift–Hohenberg equations obtained using a continuation theorem, Nonlinear Analysis, 94, 100-106. Doi: 10.1016/j.na.2013.08.007
  • Cabada, A., Souroujon, D. & Tersian, S. (2012). Heteroclinic solutions of a second-order difference equation related to the Fisher–Kolmogorov’s equation, Applied Mathematics and Computation, 218, 9442-9450. Doi: 10.1016/j.amc.2012.03.032
  • Danumjaya, P. & Pani, A. K. (2005). Orthogonal cubic spline collocation method for the extended Fisher–Kolmogorov equation, Journal of Computational and Applied Mathematics, 174, 101-117. Doi: 10.1016/j.cam.2004.04.002
  • Kadri, T. & Omrani, K. (2011). A second-order accurate difference scheme for an extended Fisher–Kolmogorov equation, Computers Mathematics with Applications, 61(2), 451-459. Doi: 10.1016/j.camwa.2010.11.022
  • Sweilam, N. H., ElSakout, D.M. & Muttardi, M.M. (2021). Numerical solution for stochastic extended Fisher- Kolmogorov equation, Chaos, Solitons and Fractals, 151, 111213. Doi: 10.1016/j.chaos.2021.111213
  • Yeun, Y. L. (2013). Heteroclinic solutions for the extended Fisher–Kolmogorov equation, Journal of Mathematical Analysis and Applications, 407, 119-129. Doi: 10.1016/j.jmaa.2013.05.012

On the Solution of a Nonhomogeneous Fisher-Kolmogorov Equation

Year 2022, , 236 - 239, 31.08.2022
https://doi.org/10.31590/ejosat.1118288

Abstract

Bu makalede, homojen olmayan Fisher-Kolmogorov denkleminin sayısal çözümünü elde etmek için yeni bir yöntem olarak Bernoulli sıralama yöntemi tanıtılmaktadır. Fisher-Kolmogorov denkleminin üç farklı durumu için Bernoulli sıralama yöntemi kullanılmıştır. Elde edilen sayısal sonuçlar tablolar ve grafik formlarda sunulmuştur.

References

  • Adomian, G. (1995). Fisher-Kolmogrov equation, Applied Mathematics Letters, 8, 51-52. Doi: 10.1016/0893-9659(95)00010-N
  • Andreu, F., Caselles, V. & Maz´on, J.M. (2010). A Fisher–Kolmogorov equation with finite speed of propagation, Journal of Differential Equations, 248, 2548-2591. Doi: 10.1016/j.jde.2010.01.005
  • Araujo, A.L. (2014). Periodic solutions for extended Fisher–Kolmogorov and Swift–Hohenberg equations obtained using a continuation theorem, Nonlinear Analysis, 94, 100-106. Doi: 10.1016/j.na.2013.08.007
  • Cabada, A., Souroujon, D. & Tersian, S. (2012). Heteroclinic solutions of a second-order difference equation related to the Fisher–Kolmogorov’s equation, Applied Mathematics and Computation, 218, 9442-9450. Doi: 10.1016/j.amc.2012.03.032
  • Danumjaya, P. & Pani, A. K. (2005). Orthogonal cubic spline collocation method for the extended Fisher–Kolmogorov equation, Journal of Computational and Applied Mathematics, 174, 101-117. Doi: 10.1016/j.cam.2004.04.002
  • Kadri, T. & Omrani, K. (2011). A second-order accurate difference scheme for an extended Fisher–Kolmogorov equation, Computers Mathematics with Applications, 61(2), 451-459. Doi: 10.1016/j.camwa.2010.11.022
  • Sweilam, N. H., ElSakout, D.M. & Muttardi, M.M. (2021). Numerical solution for stochastic extended Fisher- Kolmogorov equation, Chaos, Solitons and Fractals, 151, 111213. Doi: 10.1016/j.chaos.2021.111213
  • Yeun, Y. L. (2013). Heteroclinic solutions for the extended Fisher–Kolmogorov equation, Journal of Mathematical Analysis and Applications, 407, 119-129. Doi: 10.1016/j.jmaa.2013.05.012
There are 8 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Kenan Yıldırım 0000-0002-4471-3964

Publication Date August 31, 2022
Published in Issue Year 2022

Cite

APA Yıldırım, K. (2022). On the Solution of a Nonhomogeneous Fisher-Kolmogorov Equation. Avrupa Bilim Ve Teknoloji Dergisi(38), 236-239. https://doi.org/10.31590/ejosat.1118288