Research Article
BibTex RIS Cite

Yüksek Sıcaklığın Polipropilen Lif Takviyeli Horasan Harcının Bazı Özelliklerine Etkisi

Year 2022, , 96 - 101, 15.07.2022
https://doi.org/10.31590/ejosat.1135216

Abstract

Dünyanın pek çok yerinde, tarihi eser niteliği taşıyan yapılarda kireç esaslı harç ve sıvaların kullanıldığı bilinmektedir. Horasan harcı ise ülkemizin önemli kültürel miraslarını oluşturan tarihi yapılarda sıklıkla rastlanan kireç esaslı bir geleneksel harç türüdür. Yüzyıllardan beri yapıların inşası sırasında örgü ve sıva harcı olarak kullanılan Horasan harcı günümüzde bu yapıların onarım ve güçlendirme işlerinde sıklıkla tercih edilmektedir. Bu sebeple, bu harcın dayanım ve durabilite özelliklerinin geliştirilmesine yönelik çalışmalar devam etmektedir. Bu çalışmada da sentetik bir lif çeşidi olan polipropilen lif takviyesinin, yüksek sıcaklığa maruz bırakılan Horasan harcının bazı özelliklerine etkisi incelenmiştir. Bu amaçla, kontrol karışımına ek olarak %0,4, 0,6, 0,8 oranlarında 3 mm uzunluğunda polipropilen lif içeren toplamda 4 farklı harç karışımı hazırlanmıştır. Tüm karışımlar için su/bağlayıcı, agrega/bağlayıcı oranları ve yayılma değerleri sırasıyla, 0,91, 3,0 ve 150±10 mm olarak sabit tutulmuştur. Tüm karışımlarda, bağlayıcı kütlesinin %80’ini doğal hidrolik kireç ve %20’sini tuğla tozu oluşturmaktadır. Agrega olarak ise, %70 oranında tuğla kırığı %30 oranında dere kumu kullanılmıştır. Elde edilen harç numunelerinin, 90 günlük kür süresi sonunda, başlangıç durumunda ve 300, 600, 900 ˚C sıcaklığa maruz bırakıldıktan sonraki birim hacim ağırlık, ultrases geçiş hızı ve dinamik elastisite modülü değerleri belirlenmiştir. Deneysel çalışma sonucunda, harç karışımlarında lif kullanımı ve dozajının artışı ile hedef yayılma değerine ulaşabilmek için su azaltıcı katkı ihtiyacının arttığı tespit edilmiştir. Ayrıca, lif içeriğine bağlı olarak, numunelerin başlangıç durumunda ve 300 ˚C sıcaklığa maruz bırakıldıklarında söz konusu değerlerinde azalma olduğu görülmüştür. Daha yüksek sıcaklıklarda ise lifli ve lifsiz numunelerin ultrases geçiş hızı ve dinamik elastisite modülü değerleri açısından benzerlik gösterdiği belirlenmiştir.

Supporting Institution

Bursa Uludağ Üniversitesi Bilimsel Araştırma Projeleri Birimi

Project Number

OUAP(MH)2020/4

Thanks

Bu çalışma, Bursa Uludağ Üniversitesi Bilimsel Araştırma Projeleri Birimi tarafından OUAP(MH) 2020/4 numaralı proje kapsamında desteklenmiştir. Birinci ve ikinci yazarlar doktora eğitimleri süresince Yükseköğretim Kurulu tarafından sağlanan YÖK 100/2000 bursu ile desteklenmektedir. Ayrıca birinci yazar, TUBİTAK 2211A burs programı kapsamındaki destekleri için, Türkiye Bilimsel ve Teknolojik Araştırma Kurumu’na teşekkür eder. Ayrıca yazarlar, kireç ve tuğla tozunun kimyasal bileşimini ve fiziksel özelliklerini belirlemede Bursa Çimento Fabrikası'na, su azaltıcı katkı ve polipropilen lifin sağlanmasındaki nazik yardımlarından dolayı Polisan Yapı Kimyasalları ve Polyfibers Şirketlerine teşekkür eder.

References

  • Akca, A. H., & Özyurt, N. (2018). Deterioration and recovery of FRC after high temperature exposure. Cement and Concrete Composites, 93, 260-273.
  • Akca, A. H., & Zihnioğlu, N. Ö. (2013). High performance concrete under elevated temperatures. Construction and building materials, 44, 317-328.
  • Akman, M., Güner, A., Aksoy, İ., (1986). Horasan harcı ve betonunun tarihi ve teknik özellikleri. II. Uluslararası türk-islam bilim ve teknoloji tarihi kongresi, İ.T.Ü., İstanbul.
  • Arizzi, A., Martínez-Martínez, J., & Cultrone, G. (2013). Ultrasonic wave propagation through lime mortars: an alternative and non-destructive tool for textural characterization. Materials and Structures, 46(8), 1321-1335.
  • Arizzi, A., Viles, H., & Cultrone, G. (2012). Experimental testing of the durability of lime-based mortars used for rendering historic buildings. Construction and Building Materials, 28(1), 807-818.
  • Aydin, S., Yazici, H., & Baradan, B. (2008). High temperature resistance of normal strength and autoclaved high strength mortars incorporated polypropylene and steel fibers. Construction and Building Materials, 22(4).
  • Barbero-Barrera, M. M., & Medina, N. F. (2018). The effect of polypropylene fibers on graphite-natural hydraulic lime pastes. Construction and Building Materials, 184, 591-601.
  • Böke, H., Akkurt, S. & İpekoğlu, B. (2004). Tarihi yapılarda kullanılan Horasan harcı ve sıvalarının özellikleri. Yapı Dergisi, 269, 90-94.
  • Böke, H., Akkurt, S., Ipekoǧlu, B., & Uǧurlu, E. (2006). Characteristics of brick used as aggregate in historic brick-lime mortars and plasters. Cement and Concrete Research, 36(6), 1115–1122.
  • Brandt, A. M. (2008). Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Composite structures, 86(1-3), 3-9.
  • Demirkan, D. S. (2014). Yığma yapılarda derz kalınlığı ve duvar örme tekniğinin yapıya etkisinin anizotrop bir model üzerinde incelenmesi (Doctoral dissertation, Fen Bilimleri Enstitüsü).
  • Drougkas, A., Verstrynge, E., Hayen, R., & Van Balen, K. (2019). The confinement of mortar in masonry under compression: experimental data and micro-mechanical analysis. International Journal of Solids and Structures, 162, 105-120.
  • Durgun, M. Y., Özen, S., Karakuzu, K., Kobya, V., Bayqra, S. H., & Mardani-Aghabaglou, A. (2022). Effect of high temperature on polypropylene fiber-reinforced mortars containing colemanite wastes. Construction and Building Materials, 316, 125827.
  • Gil, L., Bernat-Masó, E., & Cañavate, F. J. (2016). Changes in properties of cement and lime mortars when incorporating fibers from end-of-life tires. Fibers, 4(1), 7.
  • Izaguirre, A., Lanas, J., & Alvarez, J. I. (2011). Effect of a polypropylene fibre on the behaviour of aerial lime-based mortars. Construction and Building Materials, 25(2), 992-1000.
  • İsafça, T., Karakuzu, K., Özen, S., Doğangün, A., & Marda ni-Aghabaglou, A. (2021). Effects of material properties on the mechanical and durability behaviors of Khorasan mortar mixtures: a review. Journal of Adhesion Science and Technology, 35(23), 2507-2528.
  • Karahan, O., & Atiş, C. D. (2011). The durability properties of polypropylene fiber reinforced fly ash concrete. Materials & Design, 32(2), 1044-1049.
  • Latifi, M. R., Biricik, Ö., & Mardani Aghabaglou, A. (2022). Effect of the addition of polypropylene fiber on concrete properties. Journal of Adhesion Science and Technology, 36(4), 345-369.
  • Neville, A. M., & Brooks, J. J. (2010). Concrete Technology, 2nd Editio. Edinburgh, England: Pearson Education Limited.
  • Nunes, C., & Slížková, Z. (2016). Freezing and thawing resistance of aerial lime mortar with metakaolin and a traditional water-repellent admixture. Construction and Building Materials, 114, 896-905.
  • Pachta V. &Stefanidou M. (2021), Evaluation of the Behaviour of Lime and Cement Based Mortars Exposed at Elevated Temperatures, 12th International conference on structural analysis of historical constructions, September 2021, Spain.
  • Rosato, L., Stefanidou, M., Milazzo, G., Fernandez, F., Livreri, P., Muratore, N., & Terranova, L. M. (2017). Study and evaluation of nano-structured cellulose fibers as additive for restoration of historical mortars and plasters. Materials Today: Proceedings, 4(7), 6954–6965.
  • Silva, B., Pinto, A. P. F., Gomes, A., & Candeias, A. (2019). Fresh and hardened state behaviour of aerial lime mortars with superplasticizer. Construction and Building Materials, 225, 1127-1139.
  • Tekin, Ç., & Kurugöl, S. (2012). Impacts of Various Organic Additives on Carbonization of Lime, Journal of the Faculty of Engineering and Architecture of Gazi University, 27(4).
  • Torraca, G. (1982). Porous building materials, materials science for architectural conservation. International Centre for The Study of The Preservation and The Restoration of Cultural Property, Italy.
  • Uysal, M., Yilmaz, K., & Ipek, M. (2012). Properties and behavior of self-compacting concrete produced with GBFS and FA additives subjected to high temperatures. Construction and Building Materials, 28(1), 321-326.

Effect of Elevated Temperature on Some Properties of Polypropylene Fiber Reinforced Khorasan Mortar

Year 2022, , 96 - 101, 15.07.2022
https://doi.org/10.31590/ejosat.1135216

Abstract

In many parts of the world, it is known that lime-based mortars and plasters are used in buildings that have the characteristics of historical monuments. On the other hand, Khorasan mortar is a traditional type of lime-based mortar that is frequently found in historical buildings that constitute the important cultural heritage of our country. Khorasan mortar was used as a masonry mortar and plaster during the construction of structures for centuries. It is also frequently preferred in the restoration works of these structures. For this reason, studies are continuing to improve the strength and durability properties of this mortar. In this study, the effect of polypropylene fiber reinforcement on some properties of Khorasan mortar specimens exposed to high temperatures was investigated. For this purpose, in addition to the control mixture, four different mortar mixtures containing 3 mm long polypropylene fiber at 0.4, 0.6 and 0.8% ratios were prepared. Water/binder, aggregate/binder ratios and target flow value for all mixtures were constant at 0.91, 3.0 and 150±10 mm, respectively. 80% of the binder mass consists of natural hydraulic lime and 20% of brick dust in all mixtures. 70% crushed brick and 30% river sand were used as aggregate. At the end of the 90-day curing period, the unit weight, ultrasonic pulse velocity and modulus of dynamic elasticity values of the mortar specimens were determined in their initial state and after exposure to 300, 600, 900 ˚C. As a result of the experimental study, it was determined that the need for water-reducing admixture increased to reach the target flow value with the increase in fiber utilization ratio in mortar mixtures. In addition, depending on the fiber utilization ratio, it was observed that the values in question decreased in the initial state and after exposure to a temperature of 300 ˚C. At higher temperatures, fibrous and non-fibrous specimens were found to have similar properties in terms of ultrasonic pulse velocity and modulus of dynamic elasticity.

Project Number

OUAP(MH)2020/4

References

  • Akca, A. H., & Özyurt, N. (2018). Deterioration and recovery of FRC after high temperature exposure. Cement and Concrete Composites, 93, 260-273.
  • Akca, A. H., & Zihnioğlu, N. Ö. (2013). High performance concrete under elevated temperatures. Construction and building materials, 44, 317-328.
  • Akman, M., Güner, A., Aksoy, İ., (1986). Horasan harcı ve betonunun tarihi ve teknik özellikleri. II. Uluslararası türk-islam bilim ve teknoloji tarihi kongresi, İ.T.Ü., İstanbul.
  • Arizzi, A., Martínez-Martínez, J., & Cultrone, G. (2013). Ultrasonic wave propagation through lime mortars: an alternative and non-destructive tool for textural characterization. Materials and Structures, 46(8), 1321-1335.
  • Arizzi, A., Viles, H., & Cultrone, G. (2012). Experimental testing of the durability of lime-based mortars used for rendering historic buildings. Construction and Building Materials, 28(1), 807-818.
  • Aydin, S., Yazici, H., & Baradan, B. (2008). High temperature resistance of normal strength and autoclaved high strength mortars incorporated polypropylene and steel fibers. Construction and Building Materials, 22(4).
  • Barbero-Barrera, M. M., & Medina, N. F. (2018). The effect of polypropylene fibers on graphite-natural hydraulic lime pastes. Construction and Building Materials, 184, 591-601.
  • Böke, H., Akkurt, S. & İpekoğlu, B. (2004). Tarihi yapılarda kullanılan Horasan harcı ve sıvalarının özellikleri. Yapı Dergisi, 269, 90-94.
  • Böke, H., Akkurt, S., Ipekoǧlu, B., & Uǧurlu, E. (2006). Characteristics of brick used as aggregate in historic brick-lime mortars and plasters. Cement and Concrete Research, 36(6), 1115–1122.
  • Brandt, A. M. (2008). Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Composite structures, 86(1-3), 3-9.
  • Demirkan, D. S. (2014). Yığma yapılarda derz kalınlığı ve duvar örme tekniğinin yapıya etkisinin anizotrop bir model üzerinde incelenmesi (Doctoral dissertation, Fen Bilimleri Enstitüsü).
  • Drougkas, A., Verstrynge, E., Hayen, R., & Van Balen, K. (2019). The confinement of mortar in masonry under compression: experimental data and micro-mechanical analysis. International Journal of Solids and Structures, 162, 105-120.
  • Durgun, M. Y., Özen, S., Karakuzu, K., Kobya, V., Bayqra, S. H., & Mardani-Aghabaglou, A. (2022). Effect of high temperature on polypropylene fiber-reinforced mortars containing colemanite wastes. Construction and Building Materials, 316, 125827.
  • Gil, L., Bernat-Masó, E., & Cañavate, F. J. (2016). Changes in properties of cement and lime mortars when incorporating fibers from end-of-life tires. Fibers, 4(1), 7.
  • Izaguirre, A., Lanas, J., & Alvarez, J. I. (2011). Effect of a polypropylene fibre on the behaviour of aerial lime-based mortars. Construction and Building Materials, 25(2), 992-1000.
  • İsafça, T., Karakuzu, K., Özen, S., Doğangün, A., & Marda ni-Aghabaglou, A. (2021). Effects of material properties on the mechanical and durability behaviors of Khorasan mortar mixtures: a review. Journal of Adhesion Science and Technology, 35(23), 2507-2528.
  • Karahan, O., & Atiş, C. D. (2011). The durability properties of polypropylene fiber reinforced fly ash concrete. Materials & Design, 32(2), 1044-1049.
  • Latifi, M. R., Biricik, Ö., & Mardani Aghabaglou, A. (2022). Effect of the addition of polypropylene fiber on concrete properties. Journal of Adhesion Science and Technology, 36(4), 345-369.
  • Neville, A. M., & Brooks, J. J. (2010). Concrete Technology, 2nd Editio. Edinburgh, England: Pearson Education Limited.
  • Nunes, C., & Slížková, Z. (2016). Freezing and thawing resistance of aerial lime mortar with metakaolin and a traditional water-repellent admixture. Construction and Building Materials, 114, 896-905.
  • Pachta V. &Stefanidou M. (2021), Evaluation of the Behaviour of Lime and Cement Based Mortars Exposed at Elevated Temperatures, 12th International conference on structural analysis of historical constructions, September 2021, Spain.
  • Rosato, L., Stefanidou, M., Milazzo, G., Fernandez, F., Livreri, P., Muratore, N., & Terranova, L. M. (2017). Study and evaluation of nano-structured cellulose fibers as additive for restoration of historical mortars and plasters. Materials Today: Proceedings, 4(7), 6954–6965.
  • Silva, B., Pinto, A. P. F., Gomes, A., & Candeias, A. (2019). Fresh and hardened state behaviour of aerial lime mortars with superplasticizer. Construction and Building Materials, 225, 1127-1139.
  • Tekin, Ç., & Kurugöl, S. (2012). Impacts of Various Organic Additives on Carbonization of Lime, Journal of the Faculty of Engineering and Architecture of Gazi University, 27(4).
  • Torraca, G. (1982). Porous building materials, materials science for architectural conservation. International Centre for The Study of The Preservation and The Restoration of Cultural Property, Italy.
  • Uysal, M., Yilmaz, K., & Ipek, M. (2012). Properties and behavior of self-compacting concrete produced with GBFS and FA additives subjected to high temperatures. Construction and Building Materials, 28(1), 321-326.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Tuğçe İsafça Kaya 0000-0002-9331-1339

Kemal Karakuzu 0000-0002-1023-3962

Ali Mardani 0000-0003-0326-5015

Adem Doğangün 0000-0002-1867-7103

Project Number OUAP(MH)2020/4
Publication Date July 15, 2022
Published in Issue Year 2022

Cite

APA İsafça Kaya, T., Karakuzu, K., Mardani, A., Doğangün, A. (2022). Yüksek Sıcaklığın Polipropilen Lif Takviyeli Horasan Harcının Bazı Özelliklerine Etkisi. Avrupa Bilim Ve Teknoloji Dergisi(37), 96-101. https://doi.org/10.31590/ejosat.1135216