Research Article
BibTex RIS Cite

Uçuş Süresi Hesaplamasında Farklı Yöntemlerin Değerlendirilmesi

Year 2022, , 119 - 122, 15.07.2022
https://doi.org/10.31590/ejosat.1136834

Abstract

Enstrümentasyon ve ölçüm gelişen endüstride oldukça önemli bir alan haline gelmiştir. Bu gelişim ölçüm hatalarının eniyilenmesi gibi gereklilikler ortaya çıkartmaktadır. Akış ve tüketimin doğru ölçümü, yanlış faturalandırma ve sular idaresinde meydana gelebilecek karışıklıkları önlemede önemli bir süreçtir. Bu çalışmada, elektronik akıllı sayaçlarda sıvı veya gaz akış hızı ölçüm uygulamaları için ultrasonik uçuş süresi (TOF) hesaplama algoritmalarının değerlendirilmesi sunulmaktadır. Transdüserler, bir piezoelektrik malzeme olarak akış ölçüm endüstrisinde kullanılır ve basınca karşı ultrasonik ses dalgaları üretiler. Bir akış ortamında karşılıklı olarak yerleştirilmiş transdüserler, her iki akış yönünde ultrasonik ses dagaları üretmek amacı ile tetiklenir. Transdüserler
arası kısa mesafe ve akış ortamında sesin yüksek hızı nedeniyle, TOF hesaplaması zorlu bir süreç haline gelmektedir. Bir transdüserin eş değer devre modeli MATLAB/Simulink ortamında nümerik olarak uygulanmakta ve transdüserler arası geçiş dalgaları olan ve tetiklenme sırasına göre isimlendirilen yukarı/aşağı akış sinyalleri elde edilmektedir. İlk olarak, tetiklenmiş bir transdüserin davranışı benzetim ortamında incelenir ve gerçek dünya koşullarını taklit etmek için ölçüm gürültüsünü benzeten bir sinyal kullanılır. Literatürde verilen problem tanımları ve önerilen algoritmalar incelenir ve aday TOF ölçüm algoritmaları seçilir. Seçilen her yöntem gerçeklenir. Daha sonra elde edilen geçiş dalgaları, her sıfır geçiş noktasında TOF değerini hesaplamak için geleneksel yöntem ile kullanılır. Ölçüm performansı arttırmak için çapraz korelasyon tabanlı bir TOF tahmin süreci metodu önerilir ve sonuçlar
geleneksel yöntem tabanlı ölçümler ile karşılaştırılır. Çalışmanın gelecekteki olası yönleri paylaşılmıştır.

Supporting Institution

BAYLAN Su Sayaçları

References

  • Kanoglu, M. (2015). Thermodynamics: An Engineering Approach 8th Edition in SI Units.
  • Rajita, G., & Mandal, N. (2016, January). Review on transit time ultrasonic flowmeter. In 2016 2nd International Conference on Control, Instrumentation, Energy & Communication (CIEC) (pp. 88-92). IEEE.
  • Lynnworth, L. C., & Liu, Y. (2006). Ultrasonic flowmeters: Half-century progress report, 1955–2005. Ultrasonics, 44, e1371-e1378.
  • Mousavi, S. F., Hashemabadi, S. H., & Jamali, J. (2020). Calculation of geometric flow profile correction factor for ultrasonic flow meter using semi-3D simulation technique. Ultrasonics, 106, 106165.
  • Chen, J., Zhang, K., Wang, L., & Yang, M. (2020). Design of a high precision ultrasonic gas flowmeter. Sensors, 20(17), 4804.
  • Peng, S., Liao, W., & Tan, H. (2018). Performance optimization of ultrasonic flow meter based on computational fluid dynamics. Advances in Mechanical Engineering, 10(8), 1687814018793264.
  • Chen, Y., Chen, Y., Hu, S., & Ni, Z. (2021). Continuous ultrasonic flow measurement for aerospace small pipelines. Ultrasonics, 109, 106260.
  • Uchiyama, Y., Morita, R., Umezawa, S., & Sugita, K. (2019). Flow rate measurement of wet steam in large bore piping by clamp-on type ultrasonic flow meter.
  • van Willigen, D. M., van Neer, P. L., Massaad, J., de Jong, N., Verweij, M. D., & Pertijs, M. A. (2020). An Algorithm to Minimize the Zero-Flow Error in Transit-Time Ultrasonic Flowmeters. IEEE Transactions on Instrumentation and Measurement, 70, 1-9.
  • Sun, S., Li, S., Lin, L., Yuan, Y., & Li, M. (2019, July). A novel signal processing method based on crosscorrelation and interpolation for ToF measurement. In 2019 IEEE 4th International Conference on Signal and Image Processing (ICSIP) (pp. 664-668). IEEE.
  • Huang, Y. S., & Young, M. S. (2009). An accurate ultrasonic distance measurement system with self temperature compensation. Instrumentation Science and Technology, 37(1), 124-133.
  • Angrisani, L., Baccigalupi, A., & Moriello, R. S. L. (2006). A measurement method based on Kalman filtering for ultrasonic time-of-flight estimation. IEEE Transactions on Instrumentation and Measurement, 55(2), 442-448.
  • Gueuning, F., Varlan, M., Eugene, C., & Dupuis, P. (1996, June). Accurate distance measurement by an autonomous ultrasonic system combining time-of-flight and phase-shift methods. In Quality Measurement: The Indispensable Bridge between Theory and Reality (No Measurements? No Science! Joint Conference-1996: IEEE Instrumentation and Measurement Technology Conference and IMEKO Tec (Vol. 1, pp. 399-404). IEEE.
  • Demirli, R., & Saniie, J. (2001). Model-based estimation of ultrasonic echoes. Part II: Nondestructive evaluation applications. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 48(3), 803-811.
  • Andria, G., Attivissimo, F., & Giaquinto, N. (2001). Digital signal processing techniques for accurate ultrasonic sensor measurement. Measurement, 30(2), 105-114.
  • Barshan, B. (2000). Fast processing techniques for accurate ultrasonic range measurements. Measurement Science and technology, 11(1), 45.
  • Krimholtz, R., Leedom, D. A., & Matthaei, G. L. (1970). New equivalent circuits for elementary piezoelectric transducers. Electronics Letters, 6(13), 398-399.

Evaluation of Different Methods on Time of Flight Calculation

Year 2022, , 119 - 122, 15.07.2022
https://doi.org/10.31590/ejosat.1136834

Abstract

Instrumentation and measurement have become a very important field in the developing industry. This development reveals requirements such as minimization of measurement errors. Accurate measurement of flow and consumption is a significant process to avoid wrong billing and entanglement for water utilities. This paper presents an ultrasonic Time-of-Flight (TOF) estimation algorithm evaluation for liquid or gas flow rate measurement applications for electronic smart meters. Transducers, as a piezoelectric material, are employed in flow measurement industry, and generate ultrasonic sound waves against pressure. Reciprocal located transducers in a flow medium are triggered to obtain ultrasonic sound waves in both flow direction. Due to the small distance between transducers and speed of sound in flow medium, TOF calculation becomes a challenging process. Equivalent circuit model of a transducer is implemented on MATLAB/Simulink environment numerically, and both upstream and downstream signals, which are the transit waves between transducers and named in order to triggering order, are obtained. Firstly, behavior of an excited transducer is evaluated on simulation environment, and a random signal, which simulates measurement noise, is employed to mimic the real-world
conditions. Problem definitions and proposed algorithms given in the literature are investigated, and candidate TOF measurement algorithms are selected. Each method is implemented. Afterward, obtained transit waves are employed with the conventional method to compute TOF at each zero-crossing point. To improve the measurement performance, a cross-correlation based method is proposed for TOF estimation process, and results are compared to conventional method-based measurements. Possible future directions of the study are indicated.

References

  • Kanoglu, M. (2015). Thermodynamics: An Engineering Approach 8th Edition in SI Units.
  • Rajita, G., & Mandal, N. (2016, January). Review on transit time ultrasonic flowmeter. In 2016 2nd International Conference on Control, Instrumentation, Energy & Communication (CIEC) (pp. 88-92). IEEE.
  • Lynnworth, L. C., & Liu, Y. (2006). Ultrasonic flowmeters: Half-century progress report, 1955–2005. Ultrasonics, 44, e1371-e1378.
  • Mousavi, S. F., Hashemabadi, S. H., & Jamali, J. (2020). Calculation of geometric flow profile correction factor for ultrasonic flow meter using semi-3D simulation technique. Ultrasonics, 106, 106165.
  • Chen, J., Zhang, K., Wang, L., & Yang, M. (2020). Design of a high precision ultrasonic gas flowmeter. Sensors, 20(17), 4804.
  • Peng, S., Liao, W., & Tan, H. (2018). Performance optimization of ultrasonic flow meter based on computational fluid dynamics. Advances in Mechanical Engineering, 10(8), 1687814018793264.
  • Chen, Y., Chen, Y., Hu, S., & Ni, Z. (2021). Continuous ultrasonic flow measurement for aerospace small pipelines. Ultrasonics, 109, 106260.
  • Uchiyama, Y., Morita, R., Umezawa, S., & Sugita, K. (2019). Flow rate measurement of wet steam in large bore piping by clamp-on type ultrasonic flow meter.
  • van Willigen, D. M., van Neer, P. L., Massaad, J., de Jong, N., Verweij, M. D., & Pertijs, M. A. (2020). An Algorithm to Minimize the Zero-Flow Error in Transit-Time Ultrasonic Flowmeters. IEEE Transactions on Instrumentation and Measurement, 70, 1-9.
  • Sun, S., Li, S., Lin, L., Yuan, Y., & Li, M. (2019, July). A novel signal processing method based on crosscorrelation and interpolation for ToF measurement. In 2019 IEEE 4th International Conference on Signal and Image Processing (ICSIP) (pp. 664-668). IEEE.
  • Huang, Y. S., & Young, M. S. (2009). An accurate ultrasonic distance measurement system with self temperature compensation. Instrumentation Science and Technology, 37(1), 124-133.
  • Angrisani, L., Baccigalupi, A., & Moriello, R. S. L. (2006). A measurement method based on Kalman filtering for ultrasonic time-of-flight estimation. IEEE Transactions on Instrumentation and Measurement, 55(2), 442-448.
  • Gueuning, F., Varlan, M., Eugene, C., & Dupuis, P. (1996, June). Accurate distance measurement by an autonomous ultrasonic system combining time-of-flight and phase-shift methods. In Quality Measurement: The Indispensable Bridge between Theory and Reality (No Measurements? No Science! Joint Conference-1996: IEEE Instrumentation and Measurement Technology Conference and IMEKO Tec (Vol. 1, pp. 399-404). IEEE.
  • Demirli, R., & Saniie, J. (2001). Model-based estimation of ultrasonic echoes. Part II: Nondestructive evaluation applications. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 48(3), 803-811.
  • Andria, G., Attivissimo, F., & Giaquinto, N. (2001). Digital signal processing techniques for accurate ultrasonic sensor measurement. Measurement, 30(2), 105-114.
  • Barshan, B. (2000). Fast processing techniques for accurate ultrasonic range measurements. Measurement Science and technology, 11(1), 45.
  • Krimholtz, R., Leedom, D. A., & Matthaei, G. L. (1970). New equivalent circuits for elementary piezoelectric transducers. Electronics Letters, 6(13), 398-399.
There are 17 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Alkım Gökçen 0000-0002-8131-388X

Bahadır Yeşil 0000-0002-9622-2593

Publication Date July 15, 2022
Published in Issue Year 2022

Cite

APA Gökçen, A., & Yeşil, B. (2022). Evaluation of Different Methods on Time of Flight Calculation. Avrupa Bilim Ve Teknoloji Dergisi(37), 119-122. https://doi.org/10.31590/ejosat.1136834