Research Article
BibTex RIS Cite

Aviyonik Kutuların İmalatında Kullanılan Malzemelerin Soğutma Üzerindeki Etkisi

Year 2023, , 17 - 26, 31.01.2023
https://doi.org/10.31590/ejosat.1144057

Abstract

Havacılık sektöründe kullanılan aviyonik kutular, işlemci, sensör ve kablolama gibi elemanları içerisinde barındıran sistemlerdir. Yüksek mukavemet ve hafiflik gerektiren bu sistemler bakır, alüminyum ve farklı tür kompozit malzemelerden imal edilebilmektedirler. Bu çalışmada, aviyonik kutuların imalatında kullanılan alüminyum ve nanokompozit malzemelerin harici bir soğutma ünitesi kullanılarak termal analizleri yapılmış ve soğutmaya olan etkileri karşılaştırılmıştır. Malzemelerin termal performansları iki aşamada gerçekleştirilmiştir. Birinci aşamada, kutu içerisinde oluşan ısının homojen olarak dağıldığı durumda iki malzemenin termal performansları hesaplanıp karşılaştırılırken ikinci aşamada ısıl yüke sebep olan enstrümanlar tek bir duvarda toplanarak hesaplamalar yapılmıştır. Analizlerde elde edilen sonuçlar dikkate alındığında homojen ısı dağılımlı koşullarda 75 oC dış ortam sıcaklıkları için alüminyum malzemeden imal edilen kutuda en yüksek sıcaklık 112,9 oC olurken alüminyum yerine epoksi matrisli VGCF nanokompoziti kullanılması durumunda bu sıcaklık değeri 96,8 oC seviyelerine düşmüştür. İkinci aşama olan ısıl yükün tek duvarda toplandığı koşulda ise yine 75 oC dış ortam sıcaklığı için hesaplamalar yapılmış olup alüminyum kutuda 99,1 oC, nanokompozit kutuda 92,2 oC sıcaklık değeri elde edilmiştir. Bu da yapılan malzeme güncellemesinin homojen ısı dağılımlı koşulda %14,3, homojen olmayan ısı dağılımı koşulunda ise %7 seviyelerinde iyileştirme olduğunu göstermektedir. Analizlerin tüm aşamalarında 800 W kapasiteli termoelektrik soğutucu kullanılmıştır. Yapılan bir diğer analizde ise alüminyumdan imal edilen kutuda hangi kapasitedeki soğutucu kullanılırsa nanokompozit malzeme ile aynı sonucu edileceği araştırılmıştır. Homojen ısı dağılımında alüminyum kutuda 112,9 oC yerine 96,8 oC sıcaklık elde etmek için soğutucu kapasitesini 800 W’dan 1100 W seviyelerine çıkarmak gerekmektedir. Tek duvara yoğunlaştırılmış koşulda ise alüminyum kutunun sıcaklığını 99,1 oC’den 92,2 oC’ye düşürmek için 900 W kapasiteli termoelektrik soğutucu kullanmak gerektiği belirlenmiştir. Bu da homojen ısı dağılımı koşullarında %37,5, homojen olmayan ısı dağılımında ise %12,5 seviyelerinde bir verim elde edildiğini göstermektedir. Dolayısıyla düşük enerji tüketimi ve düşük ağırlık özelliklerinin kritik öneme sahip olduğu havacılık sektöründe aviyonik kutularda alüminyum yerine nanokompozit malzeme kullanımının daha uygun olduğu söylenebilir.

References

  • White S. R., Mather P. T., and Smith M. J., Polym. Characterization of the cure‐state of DGEBA‐DDS epoxy using ultrasonic, dynamic mechanical, and thermal probes, Eng. Sci. 42 (2002) 51-67.
  • Rosero J. A., Ortega J. Aldabas A., E. and Romeral L., Moving towards a more electrical aircraft, IEEE A&E Systems Magazine, pp. 3-9, 2007.
  • ATR Chassis For Conduction-Cooled VME Boards (https://www.readkong.com/)
  • Öz Y., Journal of Physics: A Mathematical Model for the Description of the Electrical Conductivity of Graphene/Polymer Nanocomposites, Conference Series 1730 (2021): 012112
  • Balandin A. A., Ghosh S., Bao W., Calizo I., Teweldebrhan D., Miao F., and Lau C. N., Superior Thermal Conductivity of Single-Layer Graphene, Nano Lett. 8 (2008) 902-907.
  • Chen Y. M., and Ting J. M., Ultra High Thermal Conductivity Polymer Composites Carbon 40 (2002): 359-362
  • Afanasov I. M., Savchenko D. V., Ionov S. G., Rusakov D. A., Seleznev A. N., and Avdeev V. V., Thermal Conductivity and Mechanical Properties of Expanded Graphite, Inorganic Materials 45 (2009) 486-490.
  • Gaxiola D. L., Keith J. M., King J. A., and Johnson B. A., Electrical conductivity of carbon-filled polypropylene-based resins, J. Appl. Polym. Sci. 114 (2009) 3261-3267.
  • Yu A., Ramesh P., Sun X., Bekyarova E., Itkis M. E., and Haddon R. C., Enhanced Thermal Conductivity in a Hybrid Graphite Nanoplatelet – Carbon Nanotube Filler for Epoxy Composites, Advanced Materials 20 (2008) 4740-4744.
  • Hauser R. A., King J. A., Pagel R. M., and Keith, J. M. Effects of carbon fillers on the thermal conductivity of highly filled liquid‐crystal polymer based resins, J. Appl. Polym. Sci. 109 (2008) 2145-2155.
  • Choi Y. K., Sugimoto K. I., Song S. M., Endo M., Mechanical and Thermal Properties of Vapor-Grown Carbon Nanofiber and Polycarbonate Composite Sheets, Materials Letters 59 (2005) 3514 – 3520
  • ABAQUS Theory Manual (https://classes.engineering.wustl.edu)
  • Pradhan N. R., Duan H., Liang J. and Iannacchioe G. S., The Specific Heat and Effective Thermal Conductivity of Composites Containing Single-Wall and Multi-Wall Carbon Nanotubes, Nanotechnology 20 (2009): 245705
  • Aviyonik ve Seyrüsefer Sistemler, ASELSAN(https://www.aselsan.com.tr/)
  • ThermoTEC 170 Series 5500 BTU Thermoelectric Air Conditioning, EIC Solutions (www.eicsolutions.com)
  • Riahi M. & Nazari, H. Analysis of transient temperature and residual thermal stresses in friction stir welding of aluminum alloy 6061-T6 via numerical simulation, Springer-Verlag London Limited, 2010.
  • Öz Y., Yilmaz B., and Evis Z., A Review on Nanocomposites with Graphene Based Fillers in Poly(ether ether ketone), Polymer Science, Series A 64 (2022)
  • Chung D. D. L.. Materials for Thermal Conduction. Applied Thermal Engineering. 21(16):1593-1605, November 2001.
  • Ma A., Chen W., Hou Y., and Zhang G., The Preparation and Cure Kinetics Researches of Thermal Conductivity Epoxy/AlN Composites, Polymer-Plastics Technology and Engineering 49 (2010): 354-358.
  • Gaska K., Rybak A., Kapusta C., Sekula R., and Siwek A., Enhanced Thermal Conductivity of Epoxy–Matrix Composites with Hybrid Fillers Polymer Advanced Technologies 26 (2015) 26-31.
  • Tibbetts G.G., Gorkiewicz D.W., Hammond D.C. Jr. , Apparatus for Forming Carbon Fibers. U.S.patent, No. 5 024 (1991) 818.
  • Koyama T., Formation of Carbon Fibers from Benzene, Carbon 10 (1972) 757– 758.
  • Koyama T., Endo M., Structure and Growth Processes of Vapor-Grown Carbon Fibers, Ohyo Butsuri 42 (1973) 690.
  • Tibbetts G.G., Endo M., Beetz C.P. Jr. , Carbon Fibres Grown from the Vapor Phase: a Novel Material, SAMPLE Journal, 1986 September/- October, pp. 30– 35.
  • Tibbetts G.G., Growing Carbon Fibers with a Linearly Increasing Temperature Sweep: Experiments and Modeling, Carbon 30 (1992) 399– 406.
  • Beck S., How to Apply Advanced Composites Technology, Proceedings of the Fourth Annual Conference on Advanced Composites, ASM International Congress, Dearborn, MI, USA, 1988, pp. 463–473.

Cooling Effect of the Materials Used in the Manufacturing of Avionic Boxes

Year 2023, , 17 - 26, 31.01.2023
https://doi.org/10.31590/ejosat.1144057

Abstract

Avionic boxes which used in the aviation industry are systems that contain elements such as processor, sensor and cabling. These systems, which require high strength and lightness, can be manufactured from copper, aluminum and different types of composite materials. In this study, thermal analysis of aluminum and nanocomposite materials used in the manufacture of avionic boxes were made using an external cooling unit and their effects on cooling were compared. The thermal performances of the materials were carried out in two stages. In the first stage, when the heat generated in the box is homogeneously distributed, the thermal performances of the two materials are calculated and compared, while in the second stage, the instruments that cause the thermal load are concentrated on a single wall and calculations are made. Considering the results obtained in the analysis, the highest temperature in the box made of aluminum material for 75 oC outer temperatures under homogeneous heat distribution conditions was 112.9 oC, while this temperature value decreased to 96.8 oC when VGCF nanocomposite with epoxy matrix was used instead of aluminum. In the second stage, in the condition that the thermal load is concentrated on a single wall, calculations were made for the outer temperature of 75 oC, and a temperature value of 99.1 oC in the aluminum box and 92.2 oC in the nanocomposite box was obtained. This shows that the material update improved by 14.3% in the homogeneous heat distribution condition and 7% in the non-homogeneous heat distribution condition. A thermoelectric cooler with a capacity of 800 W was used in all stages of the analysis. In another analysis, it was investigated that which capacity of cooler is used in the box made of aluminum will give the same result as the nanocomposite material. In order to obtain a temperature of 96.8 oC instead of 112.9 oC in an aluminum box in homogeneous heat distribution, it is necessary to increase the cooler capacity from 800 W to 1100 W. In the concentrated condition on a single wall, it was determined that a thermoelectric cooler with a capacity of 900 W should be used to reduce the temperature of the aluminum box from 99.1 oC to 92.2 oC. This shows that an efficiency of 37.5% in homogeneous heat distribution conditions and 12.5% in non-homogeneous heat distribution is achieved. Therefore, it can be said that it is more appropriate to use nanocomposite materials instead of aluminum in avionic boxes in the aviation industry, where low energy consumption and low weight features have critical importance.

References

  • White S. R., Mather P. T., and Smith M. J., Polym. Characterization of the cure‐state of DGEBA‐DDS epoxy using ultrasonic, dynamic mechanical, and thermal probes, Eng. Sci. 42 (2002) 51-67.
  • Rosero J. A., Ortega J. Aldabas A., E. and Romeral L., Moving towards a more electrical aircraft, IEEE A&E Systems Magazine, pp. 3-9, 2007.
  • ATR Chassis For Conduction-Cooled VME Boards (https://www.readkong.com/)
  • Öz Y., Journal of Physics: A Mathematical Model for the Description of the Electrical Conductivity of Graphene/Polymer Nanocomposites, Conference Series 1730 (2021): 012112
  • Balandin A. A., Ghosh S., Bao W., Calizo I., Teweldebrhan D., Miao F., and Lau C. N., Superior Thermal Conductivity of Single-Layer Graphene, Nano Lett. 8 (2008) 902-907.
  • Chen Y. M., and Ting J. M., Ultra High Thermal Conductivity Polymer Composites Carbon 40 (2002): 359-362
  • Afanasov I. M., Savchenko D. V., Ionov S. G., Rusakov D. A., Seleznev A. N., and Avdeev V. V., Thermal Conductivity and Mechanical Properties of Expanded Graphite, Inorganic Materials 45 (2009) 486-490.
  • Gaxiola D. L., Keith J. M., King J. A., and Johnson B. A., Electrical conductivity of carbon-filled polypropylene-based resins, J. Appl. Polym. Sci. 114 (2009) 3261-3267.
  • Yu A., Ramesh P., Sun X., Bekyarova E., Itkis M. E., and Haddon R. C., Enhanced Thermal Conductivity in a Hybrid Graphite Nanoplatelet – Carbon Nanotube Filler for Epoxy Composites, Advanced Materials 20 (2008) 4740-4744.
  • Hauser R. A., King J. A., Pagel R. M., and Keith, J. M. Effects of carbon fillers on the thermal conductivity of highly filled liquid‐crystal polymer based resins, J. Appl. Polym. Sci. 109 (2008) 2145-2155.
  • Choi Y. K., Sugimoto K. I., Song S. M., Endo M., Mechanical and Thermal Properties of Vapor-Grown Carbon Nanofiber and Polycarbonate Composite Sheets, Materials Letters 59 (2005) 3514 – 3520
  • ABAQUS Theory Manual (https://classes.engineering.wustl.edu)
  • Pradhan N. R., Duan H., Liang J. and Iannacchioe G. S., The Specific Heat and Effective Thermal Conductivity of Composites Containing Single-Wall and Multi-Wall Carbon Nanotubes, Nanotechnology 20 (2009): 245705
  • Aviyonik ve Seyrüsefer Sistemler, ASELSAN(https://www.aselsan.com.tr/)
  • ThermoTEC 170 Series 5500 BTU Thermoelectric Air Conditioning, EIC Solutions (www.eicsolutions.com)
  • Riahi M. & Nazari, H. Analysis of transient temperature and residual thermal stresses in friction stir welding of aluminum alloy 6061-T6 via numerical simulation, Springer-Verlag London Limited, 2010.
  • Öz Y., Yilmaz B., and Evis Z., A Review on Nanocomposites with Graphene Based Fillers in Poly(ether ether ketone), Polymer Science, Series A 64 (2022)
  • Chung D. D. L.. Materials for Thermal Conduction. Applied Thermal Engineering. 21(16):1593-1605, November 2001.
  • Ma A., Chen W., Hou Y., and Zhang G., The Preparation and Cure Kinetics Researches of Thermal Conductivity Epoxy/AlN Composites, Polymer-Plastics Technology and Engineering 49 (2010): 354-358.
  • Gaska K., Rybak A., Kapusta C., Sekula R., and Siwek A., Enhanced Thermal Conductivity of Epoxy–Matrix Composites with Hybrid Fillers Polymer Advanced Technologies 26 (2015) 26-31.
  • Tibbetts G.G., Gorkiewicz D.W., Hammond D.C. Jr. , Apparatus for Forming Carbon Fibers. U.S.patent, No. 5 024 (1991) 818.
  • Koyama T., Formation of Carbon Fibers from Benzene, Carbon 10 (1972) 757– 758.
  • Koyama T., Endo M., Structure and Growth Processes of Vapor-Grown Carbon Fibers, Ohyo Butsuri 42 (1973) 690.
  • Tibbetts G.G., Endo M., Beetz C.P. Jr. , Carbon Fibres Grown from the Vapor Phase: a Novel Material, SAMPLE Journal, 1986 September/- October, pp. 30– 35.
  • Tibbetts G.G., Growing Carbon Fibers with a Linearly Increasing Temperature Sweep: Experiments and Modeling, Carbon 30 (1992) 399– 406.
  • Beck S., How to Apply Advanced Composites Technology, Proceedings of the Fourth Annual Conference on Advanced Composites, ASM International Congress, Dearborn, MI, USA, 1988, pp. 463–473.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Melih Ateş 0000-0003-3784-0495

Rasim Behcet 0000-0002-6897-3066

Publication Date January 31, 2023
Published in Issue Year 2023

Cite

APA Ateş, M., & Behcet, R. (2023). Aviyonik Kutuların İmalatında Kullanılan Malzemelerin Soğutma Üzerindeki Etkisi. Avrupa Bilim Ve Teknoloji Dergisi(46), 17-26. https://doi.org/10.31590/ejosat.1144057