IoT Tabanlı Akıllı Medya Uygulaması için 2,4 GHz ve 5 GHz Çift Bantlı Wi-Fi Anten Tasarımı
Year 2022,
, 17 - 20, 31.07.2022
Derin Arda Şahin
,
Adnan Kaya
Abstract
Nesnelerin İnterneti (IoT) tabanlı uygulama, uygulama verilerini hazır hale getirmek için kablosuz iletişim teknolojisi ile entegrasyon gerektirir. Bu makalede, Wi-Fi uygulamalarında kullanılmak üzere 2,4 GHz ve 5 GHz frekanslarında çalışan çift bantlı bir mikroşerit yama anteni tasarlanmıştır. Temel amaç, kompakt, üretimi kolay, ucuz ve yüksek performanslı bir mikroşerit yama anteni tasarlamaktır. Anten, iki C-şekilli şerit ve ön tarafında bir mikroşerit besleme hattı ile FR4'ün alt tabakasına basılmıştır. Alt tarafta yer düzleminde L şeklinde yuva vardır. Antenin genel geometrik boyutu 29x26x1.6mm3'tür. Anten bant genişliği sırasıyla 2.45GHz ve 5GHz'de 140MHz ve 552MHz'dir.
Supporting Institution
İzmir Katip Çelebi Üniversitesi Mimarlık ve Mühendislik Fakultesi
References
- Palandoken, M., & Henke, H. (2010, March). Fractal negative-epsilon metamaterial. In 2010 International Workshop on Antenna Technology (iWAT) (pp. 1-4). IEEE.
- Montero-de-Paz, Javier, et al. "Compact modules for wireless communication systems in the E-band (71–76 GHz)." Journal of Infrared, Millimeter, and Terahertz Waves 34.3 (2013): 251-266.
- Palandöken, Merih, et al. "Compact metamaterial-based bias tee design for 1.55 μm waveguide-photodiode based 71–76GHz wireless transmitter." Progress in Electromagnetics Research Symposium, PIERS. 2012.
- Palandoken, M., and H. Henke. "Fractal spiral resonator as magnetic metamaterial." 2009 Applied Electromagnetics Conference (AEMC). IEEE, 2009.
- Rymanov, Vitaly, et al. "Integrated photonic 71–76 GHz transmitter module employing high linearity double mushroom-type 1.55 μm waveguide photodiodes." 2012 IEEE International Topical Meeting on Microwave Photonics. IEEE, 2012.
- Stutzman, W. L., & Thiele, G. A. (2012). Antenna theory and design. John Wiley & Sons. H. Liu, R. Li, Y. Pan, X.
- Quan, L. Yang, and L. Zheng, “A multibroadband planar antenna for gsm/umts/lte and wlan/wimax handsets,” IEEE Trans. Antennas and Propag., vol. 62, no. 5, pp. 2856–2860, 2014.
- M. R. Ahsan, M. T. Islam, M. Habib Ullah, H. Arshad, and M. F. Mansor, “Low-cost dielectric substrate for designing low profile multiband monopole microstrip antenna,” The Scientific World Journal, vol. 2014, 2014.
- Chen, S.; Dong, D.; Liao, Z.; Cai, Q.; Liu, G. Compact wideband and dual-band antenna for TD-LTE and WLAN applications.Electron. Lett. 2014, 50, 1111–1112.
- A. Ali, F. Mirza, R. A. Abd-Alhameed Electrical Engineering and Computer Science, University of Bradford Bradford, UK. Design of a Sierpinski Patch Antenna around 2.4 GHz/5GHz for WiFi (IEEE 802.lln) Applications.
- Hung-Wei Lo#1 , Eric S. Li§2 , Yu-You Lin#3 , Roger Lu*4, and Kuo-Sheng Chin#5 #Dep. of Electronic Engineering, Chang Gung University, Taoyuan, Taiwan, “R.O.C. Dual-Wideband Patch-Slot Loop Textile Antenna for WBAN/WiFi/LTE Applications”.
- Kim Ho Yeap, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia.” A compact double-psi-shaped dual band patch antenna for WLAN/LTE applications”.
- Radouane Karli • Hassan Ammor” Rectangular Patch Antenna for Dual-Band RFID and WLAN Applications” Electronic and Communication Laboratory-LEC, EMI, Mohammed V University-Agdal UM5A, Rabat, Morocco.
- Raad H. Thaher1 , Zainab S. Jamil* 2 Department of Electrical Engineering, Almustansiryiah University, Iraq” Design of Dual Band Microstrip Antenna for Wi-Fi and WiMax Applications”.
- Fujimoto, K. (2008). Mobile antenna systems handbook. Artech House.s
2.4 GHz and 5 GHz Dual Band Wi-Fi Antenna Design for IoT Based Smart Media Application
Year 2022,
, 17 - 20, 31.07.2022
Derin Arda Şahin
,
Adnan Kaya
Abstract
Internet of Things (IoT) based application requires integration with the wireless communication technology to make the application data readily available. In this article, a dual band microstrip patch antenna operating at 2.4 GHz and 5 GHz frequencies is designed for use in Wi-Fi applications. The main purpose is to design a compact, easy to manufacture, cheap and high-performance microstrip patch antenna. The antenna is printed on the substrate of FR4 with two C-shaped strips and a microstrip feed line on the front side. There is L-shaped slot in the ground plane on the bottom side. The overall geometric size of the antenna is 29x26x1.6mm3. The antenna bandwidth is 140MHz and 552MHz at 2.45GHz and 5GHz respectively.
References
- Palandoken, M., & Henke, H. (2010, March). Fractal negative-epsilon metamaterial. In 2010 International Workshop on Antenna Technology (iWAT) (pp. 1-4). IEEE.
- Montero-de-Paz, Javier, et al. "Compact modules for wireless communication systems in the E-band (71–76 GHz)." Journal of Infrared, Millimeter, and Terahertz Waves 34.3 (2013): 251-266.
- Palandöken, Merih, et al. "Compact metamaterial-based bias tee design for 1.55 μm waveguide-photodiode based 71–76GHz wireless transmitter." Progress in Electromagnetics Research Symposium, PIERS. 2012.
- Palandoken, M., and H. Henke. "Fractal spiral resonator as magnetic metamaterial." 2009 Applied Electromagnetics Conference (AEMC). IEEE, 2009.
- Rymanov, Vitaly, et al. "Integrated photonic 71–76 GHz transmitter module employing high linearity double mushroom-type 1.55 μm waveguide photodiodes." 2012 IEEE International Topical Meeting on Microwave Photonics. IEEE, 2012.
- Stutzman, W. L., & Thiele, G. A. (2012). Antenna theory and design. John Wiley & Sons. H. Liu, R. Li, Y. Pan, X.
- Quan, L. Yang, and L. Zheng, “A multibroadband planar antenna for gsm/umts/lte and wlan/wimax handsets,” IEEE Trans. Antennas and Propag., vol. 62, no. 5, pp. 2856–2860, 2014.
- M. R. Ahsan, M. T. Islam, M. Habib Ullah, H. Arshad, and M. F. Mansor, “Low-cost dielectric substrate for designing low profile multiband monopole microstrip antenna,” The Scientific World Journal, vol. 2014, 2014.
- Chen, S.; Dong, D.; Liao, Z.; Cai, Q.; Liu, G. Compact wideband and dual-band antenna for TD-LTE and WLAN applications.Electron. Lett. 2014, 50, 1111–1112.
- A. Ali, F. Mirza, R. A. Abd-Alhameed Electrical Engineering and Computer Science, University of Bradford Bradford, UK. Design of a Sierpinski Patch Antenna around 2.4 GHz/5GHz for WiFi (IEEE 802.lln) Applications.
- Hung-Wei Lo#1 , Eric S. Li§2 , Yu-You Lin#3 , Roger Lu*4, and Kuo-Sheng Chin#5 #Dep. of Electronic Engineering, Chang Gung University, Taoyuan, Taiwan, “R.O.C. Dual-Wideband Patch-Slot Loop Textile Antenna for WBAN/WiFi/LTE Applications”.
- Kim Ho Yeap, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia.” A compact double-psi-shaped dual band patch antenna for WLAN/LTE applications”.
- Radouane Karli • Hassan Ammor” Rectangular Patch Antenna for Dual-Band RFID and WLAN Applications” Electronic and Communication Laboratory-LEC, EMI, Mohammed V University-Agdal UM5A, Rabat, Morocco.
- Raad H. Thaher1 , Zainab S. Jamil* 2 Department of Electrical Engineering, Almustansiryiah University, Iraq” Design of Dual Band Microstrip Antenna for Wi-Fi and WiMax Applications”.
- Fujimoto, K. (2008). Mobile antenna systems handbook. Artech House.s