Research Article
BibTex RIS Cite

6 GHz Altı 5G Kablosuz Haberleşme Uygulamalarında Butler Matris Besleme Hattı İçin Küçük Boyutlu Atlama Tasarımı

Year 2022, , 51 - 54, 31.07.2022
https://doi.org/10.31590/ejosat.1144420

Abstract

Butler matrisi, hüzme oluşturmak için dizi antenlerde kullanılan besleme ağlarından bir tanesidir. Bu besleme ağını kullanmanın birkaç avantajı vardır. Bunlardan biri imalatının kolay olması, diğeri ise maliyetinin düşük olmasıdır. Butler matris yapısı üç pasif mikrodalga bileşeninden oluşur. Bunlar yönlü hibrit kuplörler, faz kaydırıcılar ve atlamalardır. Atlama, aralarında yüksek izolasyon bulunan iki hat arasında geçiş yapmak için kullanılan pasif bir mikrodalga bileşenidir. Bu makale, 5G uygulamaları için tasarlanmış Butler matris besleme ağlarında kullanımı için mikroşerit atlama sunar. Makalede sunulan atlama tasarlanmış ve simüle edilmiştir. Önerilen atlamanın çalışma frekansı 4.5 GHz'dir ve çoğunlukla butler matris uygulamalarında kullanılmak üzere tasarlanmıştır. Makalede önerilen çaprazlama, FR-4 malzeme kullanılarak tasarlanmıştır. Kullanılan malzemenin dielektrik sabiti 4.3, kalınlığı 1.57 mm'dir. Tasarlanan geçidin boyutu 62.8 x 27.8 mm^2’dir. 5G uygulaması için butler matris besleme ağında önerilen atlamanın kullanılabilmesi için yansıma katsayısı ve izolasyon seviyesi izin verilen seviyededir. Tasarlanan atlamanın 4.5 GHz'de geri dönüş kaybı 26.09 dB'dir. Aynı zamanda izolasyon değeri ise 22.78 dB'dir.

References

  • A. Karimbu Vallappil, M. K. A. Rahim, B. A. Khawaja and M. N. Iqbal, "Compact Metamaterial Based 4x4 Butler Matrix With Improved Bandwidth for 5G Applications," in IEEE Access, vol. 8, pp. 13573-13583, 2020
  • Rusan Kumar Barik, Qingsha S. Cheng, Nrusingha Charan Pradhan, Karthikeyan Sholampettai Subramanian,A miniaturized quad-band branch-line crossover for GSM/WiFi/5G/WLAN applications, AEU International Journal of Electronics and Communications, Volume 134,
  • J. Butler, “Beam-forming matrix simplifies design of electronically scanned antennas,” Electronic design, vol. 12, pp. 170–173, 1961
  • N. Jamaly, A. Derneryd, and Y. Rahmat-Samii, “Spatial Diversity Performance of Multiport Antennas in the Presence of a Butler Network,” IEEE Trans. Antennas Propag., vol. 61, no. 11, pp. 5697–5705, Nov 2013
  • T. Djerafi and K. Wu, “A Low-Cost Wideband 77-GHz Planar Butler Matrix in SIW Technology,” IEEE Trans. Antennas Propag., vol. 60, no. 10, pp. 4949–4954, Oct 2012.
  • C.-H. Tseng, C.-J. Chen, and T.-H. Chu, “A low-cost 60-GHz switchedbeam patch antenna array with Butler matrix network,” IEEE Antennas and Wireless Propagation Letters, vol. 7, pp. 432–435, 2008.
  • A. Tajik, A. Shafiei Alavijeh and M. Fakharzadeh, "Asymmetrical $4\times4$ Butler Matrix and its Application for Single Layer $8\times8$ Butler Matrix," in IEEE Transactions on Antennas and Propagation, vol. 67, no. 8, pp. 5372-5379, Aug. 2019
  • A. M. El-Tager and M. A. Eleiwa, Design and Implementation of a Smart Antenna Using Butler Matrix for ISMband, Progress In Electromagnetics Research Symposium, Beijing, China, March 23-27, 2009
  • C. Tang, K. Lin and W. Chen, "Analysis and Design of Compact and Wide-Passband Planar Crossovers," in IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 12, pp. 2975-2982, Dec. 2014
  • Mohammad A. Maktoomi, Mohammad H. Maktoomi, Zeba N. Zafar, Mohamed Helaoui, and Fadhel M. Ghannouchi, "Simplified Analysis of Symmetrical RF Crossovers Extended with Arbitrary Complex Passive Two-Port Networks," Progress In Electromagnetics Research Letters, Vol. 85, 1-8, 2019.
  • Jordi Verdú Tirado, Endika Bernaola, and Pedro de Paco, "A Compact Microstrip Crossover Based on Capacitively-Loaded Artificial Transmission Lines Branch-Line Sections," Progress In Electromagnetics Research Letters, Vol. 68, 121-126, 2017.

A Compact Crossover Design for Butler Matrix Feeding Network in 5G Sub 6 GHz Wireless Applications

Year 2022, , 51 - 54, 31.07.2022
https://doi.org/10.31590/ejosat.1144420

Abstract

The butler matrix is one of the passive feeding networks used with array antennas to form beams. There are several advantages to using this beamforming network. One of them is that it is easy to manufacture, and the other is that it is low in cost. Butler matrix structure consists of three passive microwave components. These are directional hybrid couplers, phase shifters, and crossovers. A crossover is a passive microwave component used to cross between two lines with high isolation between them. This article presents microstrip crossover for use in Butler matrix feeding networks designed for 5G applications. The crossover has been presented in the article was designed and simulated. The proposed crossover operates at 4.5 GHz and it is designed for use in mostly butler matrix applications. The crossover has been proposed in the article has been designed using the FR-4 substrate. The dielectric constant of the used substrate is 4.3 and the thickness is 1.57 mm. The size of the designed crossover is 62.8 x 27.8 mm^2. The reflection coefficient and isolation level are in the permissible level in order for the proposed crossover to be utilized in the Butler matrix beamforming network for 5G the application. The return loss value of the designed crossover is 26.09 dB at 4.5 GHz. Same time the isolation value is 22.78 dB.

References

  • A. Karimbu Vallappil, M. K. A. Rahim, B. A. Khawaja and M. N. Iqbal, "Compact Metamaterial Based 4x4 Butler Matrix With Improved Bandwidth for 5G Applications," in IEEE Access, vol. 8, pp. 13573-13583, 2020
  • Rusan Kumar Barik, Qingsha S. Cheng, Nrusingha Charan Pradhan, Karthikeyan Sholampettai Subramanian,A miniaturized quad-band branch-line crossover for GSM/WiFi/5G/WLAN applications, AEU International Journal of Electronics and Communications, Volume 134,
  • J. Butler, “Beam-forming matrix simplifies design of electronically scanned antennas,” Electronic design, vol. 12, pp. 170–173, 1961
  • N. Jamaly, A. Derneryd, and Y. Rahmat-Samii, “Spatial Diversity Performance of Multiport Antennas in the Presence of a Butler Network,” IEEE Trans. Antennas Propag., vol. 61, no. 11, pp. 5697–5705, Nov 2013
  • T. Djerafi and K. Wu, “A Low-Cost Wideband 77-GHz Planar Butler Matrix in SIW Technology,” IEEE Trans. Antennas Propag., vol. 60, no. 10, pp. 4949–4954, Oct 2012.
  • C.-H. Tseng, C.-J. Chen, and T.-H. Chu, “A low-cost 60-GHz switchedbeam patch antenna array with Butler matrix network,” IEEE Antennas and Wireless Propagation Letters, vol. 7, pp. 432–435, 2008.
  • A. Tajik, A. Shafiei Alavijeh and M. Fakharzadeh, "Asymmetrical $4\times4$ Butler Matrix and its Application for Single Layer $8\times8$ Butler Matrix," in IEEE Transactions on Antennas and Propagation, vol. 67, no. 8, pp. 5372-5379, Aug. 2019
  • A. M. El-Tager and M. A. Eleiwa, Design and Implementation of a Smart Antenna Using Butler Matrix for ISMband, Progress In Electromagnetics Research Symposium, Beijing, China, March 23-27, 2009
  • C. Tang, K. Lin and W. Chen, "Analysis and Design of Compact and Wide-Passband Planar Crossovers," in IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 12, pp. 2975-2982, Dec. 2014
  • Mohammad A. Maktoomi, Mohammad H. Maktoomi, Zeba N. Zafar, Mohamed Helaoui, and Fadhel M. Ghannouchi, "Simplified Analysis of Symmetrical RF Crossovers Extended with Arbitrary Complex Passive Two-Port Networks," Progress In Electromagnetics Research Letters, Vol. 85, 1-8, 2019.
  • Jordi Verdú Tirado, Endika Bernaola, and Pedro de Paco, "A Compact Microstrip Crossover Based on Capacitively-Loaded Artificial Transmission Lines Branch-Line Sections," Progress In Electromagnetics Research Letters, Vol. 68, 121-126, 2017.
There are 11 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Gudrat Heydarli 0000-0002-0510-5923

Merih Palandöken 0000-0003-3487-2467

Publication Date July 31, 2022
Published in Issue Year 2022

Cite

APA Heydarli, G., & Palandöken, M. (2022). 6 GHz Altı 5G Kablosuz Haberleşme Uygulamalarında Butler Matris Besleme Hattı İçin Küçük Boyutlu Atlama Tasarımı. Avrupa Bilim Ve Teknoloji Dergisi(39), 51-54. https://doi.org/10.31590/ejosat.1144420