Prediction of Metacognition Awareness of Middle School Students: Comparison of ANN, ANFIS and Statistical Techniques
Year 2022,
, 450 - 461, 31.08.2022
Seda Göktepe
,
Sevda Göktepe Yıldız
Abstract
Problem-solving skill is one of the most important skills that an individual should have today. Reflection can best be observed in the problem-solving process because reflective thinking occurs when a particular problem is perceived. Since reflective thinking features are related to the individual’s own thinking processes, it has the feature of being a predictive variable for metacognition. This study’s main goal is to create models that predict middle school students’ mathematical metacognition awareness through reflective thinking characteristics towards mathematical problem solving utilizing Artificial Neural Network (ANN), the Adaptive Neuro-Fuzzy Inference System (ANFIS) and statistical techniques. Academic achievement scores, cumulative grade point average (GPA), and reflective thinking characteristics of students towards mathematical problem solving were used as input parameters while constructing the ANN and ANFIS model, and mathematical metacognition awareness of students served as the only output parameter. In addition, the system was trained using 70% of the data to build the ANFIS model. Feed-forward backpropagation with the Levenberg-Marquardt learning algorithm was used to train the network for ANN model. Statistically, there is no significant difference between the students' actual metacognitive awareness scores and the predicted ANFIS and ANN metacognitive awareness scores. These findings showed that the created models performed successfully in predicting the mathematical metacognitive awareness of middle school students through their academic achievement (general and mathematics) and reflective thinking features for problem-solving. This study serves as an excellent example of how artificial intelligence can be used to anticipate certain educational traits of students. Different applications of artificial intelligence in the area of education can be obtained by varying the methodologies employed in the research.
References
- Aydın, U., & Ubuz, B. (2010). Turkish version of the junior metacognitive awareness inventory: The validation study. Education and Science, 35(157), 30-45.
- Büyüköztürk, Ş. (2012). Sosyal bilimler için veri analizi el kitabı. Pegem Akademi.
- Denai, M. A., Palis, F., & Zeghbib, A. (2004, October). ANFIS based modelling and control of non-linear systems: a tutorial. In 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No. 04CH37583) (Vol. 4, pp. 3433-3438). IEEE.
- Dewey, J. (1933). How We Think. A Restatement of the Relation of Reflective Thinking to the Educative Process, Boston etc. (DC Heath and Company) 1933.
- Dongare, A.D., Kharde, R.R., & Kachare, A.D. (2012). Introduction to artificial neural network (ANN) methods, Int. J. Eng. Innov. Technol., 2, 189–194.
- Everson, H. T., & Tobias, S. (1998). The ability to estimate knowledge and performance in college: A metacognitive analysis. Instructional Science, 26, 65-79.
- Fichtner, B. (2005). Reflective learning. In Activity and Sign (pp. 179-190). Springer, Boston, MA.
- Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive-developmental inquiry. American Psychologist, 34(10), 906-911.
- Flavell, J. H. (1987). Speculations about the nature and development of metacognition. In F. E. Weinert & R. H. Kluwe (Eds.), Metacognition, motivation and, understanding (pp. 21-29). Hillsdale, NJ: Lawrence Erlbaum.
- Fraenkel, J. R., & Wallen, N. E. (2006). How to design and evaluate research in education. McGaw-Hill International Edition.
- García, F. J., Izquierdo, V., de Miguel, L. J., & Perán, J. R. (1997). Fuzzy identification of systems and its applications to fault diagnosis systems. IFAC Proceedings Volumes, 30(18), 693-700.
- Harskamp, E. G., & Suhre, C. J. M. (2007). Schoenfeld’s problem solving theory in a student controlled learning environment. Computers & Education, 49, 822-839.
- Hassan, T. S. K. M. M. (2010). Adaptive neuro fuzzy inference system (ANFIS) for fault classification in the transmission lines. Online J. Electron. Electr. Eng.(OJEEE), 2, 2551-2555.
- Hepner, G., Logan, T., Ritter, N., & Bryant, N. (1990). Artificial neural network classification using a minimal training set- Comparison to conventional supervised classification. Photogrammetric Engineering and Remote Sensing, 56(4), 469-473.
- Hossain, I., Choudhury, I. A., Mamat, A. B., & Hossain, A. (2017). Predicting the colour properties of viscose knitted fabrics using soft computing approaches. The Journal of the Textile Institute, 108(10), 1689-1699.
- Jagtap, P., & Pillai, G. N. (2014, February). Comparison of extreme-ANFIS and ANFIS networks for regression problems. In 2014 IEEE International Advance Computing Conference (IACC) (pp. 1190-1194). IEEE.
- Johnson, R. B., & Christensen, L. B. (2014). Educational research: Quantitative, qualitative, and mixed approaches (5th ed.). CA: Sage.
- Kaplan, A., & Duran, M. (2016). Ortaokul öğrencilerine yönelik matematiksel üstbiliş farkındalık ölçeği: Geçerlik ve güvenirlik çalışması. Atatürk Üniversitesi Kazım Karabekir Eğitim Fakültesi Dergisi, 32, 1-17.
- Karaboga, D., & Kaya, E. (2019). Adaptive network based fuzzy inference system (ANFIS) training approaches: a comprehensive survey. Artificial Intelligence Review, 52(4), 2263-2293.
- Katkat, D., & Mızrak, O. (2003). Öğretmen Adaylarının Pedogojik Eğitimlerinin Problem Çözme Becerilerine Etkisi. Milli Eğitim Dergisi, 158.
- Khan, G. M. (2018). Artificial neural network (ANNs). In Evolution of Artificial Neural Development (pp. 39-55). Springer, Cham.
- Kızılkaya, G., & Aşkar, P. (2010). Problem çözmeye yönelik yansıtıcı düşünme becerisi ölçeğinin geliştirilmesi. Eğitim ve Bilim, 34(154), 82-92.
- Kukreja, H., Bharath, N., Siddesh, C. S., & Kuldeep, S. (2016). An introduction to artificial neural network. Int J Adv Res Innov Ideas Educ, 1, 27-30.
- Lochan, K., & Roy, B. K. (2015). Control of two-link 2-DOF robot manipulator using fuzzy logic techniques: a review. In Proceedings of fourth international conference on soft computing for problem solving (pp. 499-511). Springer, New Delhi.
- Majumder, M. (2015). Artificial neural network. In Impact of Urbanization on Water Shortage in Face of Climatic Aberrations (pp. 49-54). Springer, Singapore.
- Montgomery, D. E. (1992). Young children’s theory of knowing: The development of a folk epistemology. Developmental Review, 12, 410-430.
- Moon, J. (1999). Reflection in learning & professional development, theory and practice. London: Kogan Page Inc.
- Sarkar, J., Prottoy, Z. H., Bari, M. T., & Al Faruque, M. A. (2021). Comparison of ANFIS and ANN modeling for predicting the water absorption behavior of polyurethane treated polyester fabric. Heliyon, 7(9), e08000.
- Schraw, G., & Moshman, D. (1995). Metacognitive theories. Educational Psychology Review, 7(4), 351-371.
- Schraw, G. (2009). Measuring metacognitive judgments. In D. J. Hacker, J. Dunlosky, & A. C. Graesser (Eds.), Handbook of metacognition in education. (pp. 415-429). New York: Routledge.
- Schön, D. (1987). Educating the reflective practitioner: Toward a new design for teaching and learning in the professions. San Francisco: Jossey Bass.
- Sharma, V., Rai, S. & Dev, A. (2012). A comprehensive study of artificial neural networks, Int. J. Adv. Res. Comput. Sci. Software Eng., 2, 278–284.
- Shermis, S. S. (1992). Critical thinking: helping students learn reflectively. Bloomington: EDINFO Press.
- Singh, R., Kainthola, A., & Singh, T. N. (2012). Estimation of elastic constant of rocks using an ANFIS approach. Applied Soft Computing, 12(1), 40-45.
- Sugeno, M. (1985). An introductory survey of fuzzy control. Information sciences, 36(1-2), 59-83.
- Özsoy, G. (2008). Üstbiliş. Türk Eğitim Bilimleri Dergisi, 6(4), 713-740.
- Özsoy, G., & Günindi, Y. (2011). Okulöncesi öğretmen adaylarının üstbilişsel farkındalık düzeyleri. İlköğretim Online, 10(2), 430-440.
- Viotti, P., Liuti, G., & Di Genova, P. (2002). Atmospheric urban pollution: applications of an artificial neural network (ANN) to the city of Perugia. Ecological Modelling, 148(1), 27-46.
- Walia, N., Singh, H., & Sharma, A. (2015). ANFIS: Adaptive neuro-fuzzy inference system-a survey. International Journal of Computer Applications, 123(13).
- Woolfolk, A. (2004). Educational psychology. Boston: Pearson, Allyn and Bacon.
- Yıldız, E., Akpınar, E., Tatar, N., & Ergin, Ö. (2009). İlköğretim öğrencileri için geliştirilen biliş üstü ölçeği’nin açımlayıcı ve doğrulayıcı faktör analizi. Kuram ve Uygulamada Eğitim Bilimleri, 9(3), 1573-1604.
- Zadeh, L. A. (1996). Fuzzy sets. In Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers by Lotfi A Zadeh (pp. 394-432).
- Zou, J., Han, Y., & So, S. S. (2008). Overview of artificial neural networks. Artificial Neural Networks, 14-22.
Prediction of Metacognition Awareness of Middle School Students: Comparison of ANN, ANFIS and Statistical Techniques
Year 2022,
, 450 - 461, 31.08.2022
Seda Göktepe
,
Sevda Göktepe Yıldız
Abstract
Problem çözme becerisi, günümüzde bireyin sahip olması gereken en önemli becerilerden biridir. Yansıtma en iyi problem çözme sürecinde gözlemlenebilir çünkü yansıtıcı düşünme belirli bir problem algılandığında ortaya çıkar. Yansıtıcı düşünme özellikleri bireyin kendi düşünme süreçleri ile ilgili olduğundan üst biliş için yordayıcı bir değişken olma özelliğine sahiptir. Bu çalışmanın temel amacı, Yapay Sinir Ağı (YSA), Uyarlanabilir Nöro-Bulanık Çıkarım Sistemi (ANFIS) ve istatistisel yöntemler kullanarak matematiksel problem çözmeye yönelik yansıtıcı düşünme özellikleri aracılığıyla ortaokul öğrencilerinin matematiksel üstbiliş farkındalıklarını tahmin eden modeller oluşturmaktır. YSA ve ANFIS modelleri oluşturulurken akademik başarı puanları, kümülatif genel not ortalaması (GPA) ve öğrencilerin matematiksel problem çözmeye yönelik yansıtıcı düşünme özellikleri girdi parametresi olarak kullanılmış ve tek çıktı parametresi olarak öğrencilerin matematiksel üstbiliş farkındalıkları kullanılmıştır. Ayrıca sistem, ANFIS modelini oluşturmak için verilerin %70'i kullanılarak eğitilmiştir. Yapay sinir ağını eğitmek için Levenberg-Marquardt öğrenme algoritması ile ileri beslemeli geri yayılım kullanılmıştır. İstatistiksel olarak, öğrencilerin gerçek üstbiliş farkındalık puanları ile tahmin edilen hem ANFIS hem de ANN üstbiliş farkındalık puanları arasında anlamlı bir fark yoktur. Bu bulgular, oluşturulan modellerin ortaokul öğrencilerinin akademik başarıları (genel ve matematik) ve problem çözmeye yönelik yansıtıcı düşünme özellikleri aracılığıyla matematiksel üstbilişsel farkındalıklarını yordamada başarılı performans gösterdiğini göstermiştir. Bu çalışma, öğrencilerin belirli eğitim özelliklerini tahmin etmek için yapay zekanın nasıl kullanılabileceğinin bir örneğidir. Araştırmada kullanılan metodolojiler çeşitlendirilerek eğitim alanında farklı yapay zeka uygulamaları elde edilebilir.
References
- Aydın, U., & Ubuz, B. (2010). Turkish version of the junior metacognitive awareness inventory: The validation study. Education and Science, 35(157), 30-45.
- Büyüköztürk, Ş. (2012). Sosyal bilimler için veri analizi el kitabı. Pegem Akademi.
- Denai, M. A., Palis, F., & Zeghbib, A. (2004, October). ANFIS based modelling and control of non-linear systems: a tutorial. In 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No. 04CH37583) (Vol. 4, pp. 3433-3438). IEEE.
- Dewey, J. (1933). How We Think. A Restatement of the Relation of Reflective Thinking to the Educative Process, Boston etc. (DC Heath and Company) 1933.
- Dongare, A.D., Kharde, R.R., & Kachare, A.D. (2012). Introduction to artificial neural network (ANN) methods, Int. J. Eng. Innov. Technol., 2, 189–194.
- Everson, H. T., & Tobias, S. (1998). The ability to estimate knowledge and performance in college: A metacognitive analysis. Instructional Science, 26, 65-79.
- Fichtner, B. (2005). Reflective learning. In Activity and Sign (pp. 179-190). Springer, Boston, MA.
- Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive-developmental inquiry. American Psychologist, 34(10), 906-911.
- Flavell, J. H. (1987). Speculations about the nature and development of metacognition. In F. E. Weinert & R. H. Kluwe (Eds.), Metacognition, motivation and, understanding (pp. 21-29). Hillsdale, NJ: Lawrence Erlbaum.
- Fraenkel, J. R., & Wallen, N. E. (2006). How to design and evaluate research in education. McGaw-Hill International Edition.
- García, F. J., Izquierdo, V., de Miguel, L. J., & Perán, J. R. (1997). Fuzzy identification of systems and its applications to fault diagnosis systems. IFAC Proceedings Volumes, 30(18), 693-700.
- Harskamp, E. G., & Suhre, C. J. M. (2007). Schoenfeld’s problem solving theory in a student controlled learning environment. Computers & Education, 49, 822-839.
- Hassan, T. S. K. M. M. (2010). Adaptive neuro fuzzy inference system (ANFIS) for fault classification in the transmission lines. Online J. Electron. Electr. Eng.(OJEEE), 2, 2551-2555.
- Hepner, G., Logan, T., Ritter, N., & Bryant, N. (1990). Artificial neural network classification using a minimal training set- Comparison to conventional supervised classification. Photogrammetric Engineering and Remote Sensing, 56(4), 469-473.
- Hossain, I., Choudhury, I. A., Mamat, A. B., & Hossain, A. (2017). Predicting the colour properties of viscose knitted fabrics using soft computing approaches. The Journal of the Textile Institute, 108(10), 1689-1699.
- Jagtap, P., & Pillai, G. N. (2014, February). Comparison of extreme-ANFIS and ANFIS networks for regression problems. In 2014 IEEE International Advance Computing Conference (IACC) (pp. 1190-1194). IEEE.
- Johnson, R. B., & Christensen, L. B. (2014). Educational research: Quantitative, qualitative, and mixed approaches (5th ed.). CA: Sage.
- Kaplan, A., & Duran, M. (2016). Ortaokul öğrencilerine yönelik matematiksel üstbiliş farkındalık ölçeği: Geçerlik ve güvenirlik çalışması. Atatürk Üniversitesi Kazım Karabekir Eğitim Fakültesi Dergisi, 32, 1-17.
- Karaboga, D., & Kaya, E. (2019). Adaptive network based fuzzy inference system (ANFIS) training approaches: a comprehensive survey. Artificial Intelligence Review, 52(4), 2263-2293.
- Katkat, D., & Mızrak, O. (2003). Öğretmen Adaylarının Pedogojik Eğitimlerinin Problem Çözme Becerilerine Etkisi. Milli Eğitim Dergisi, 158.
- Khan, G. M. (2018). Artificial neural network (ANNs). In Evolution of Artificial Neural Development (pp. 39-55). Springer, Cham.
- Kızılkaya, G., & Aşkar, P. (2010). Problem çözmeye yönelik yansıtıcı düşünme becerisi ölçeğinin geliştirilmesi. Eğitim ve Bilim, 34(154), 82-92.
- Kukreja, H., Bharath, N., Siddesh, C. S., & Kuldeep, S. (2016). An introduction to artificial neural network. Int J Adv Res Innov Ideas Educ, 1, 27-30.
- Lochan, K., & Roy, B. K. (2015). Control of two-link 2-DOF robot manipulator using fuzzy logic techniques: a review. In Proceedings of fourth international conference on soft computing for problem solving (pp. 499-511). Springer, New Delhi.
- Majumder, M. (2015). Artificial neural network. In Impact of Urbanization on Water Shortage in Face of Climatic Aberrations (pp. 49-54). Springer, Singapore.
- Montgomery, D. E. (1992). Young children’s theory of knowing: The development of a folk epistemology. Developmental Review, 12, 410-430.
- Moon, J. (1999). Reflection in learning & professional development, theory and practice. London: Kogan Page Inc.
- Sarkar, J., Prottoy, Z. H., Bari, M. T., & Al Faruque, M. A. (2021). Comparison of ANFIS and ANN modeling for predicting the water absorption behavior of polyurethane treated polyester fabric. Heliyon, 7(9), e08000.
- Schraw, G., & Moshman, D. (1995). Metacognitive theories. Educational Psychology Review, 7(4), 351-371.
- Schraw, G. (2009). Measuring metacognitive judgments. In D. J. Hacker, J. Dunlosky, & A. C. Graesser (Eds.), Handbook of metacognition in education. (pp. 415-429). New York: Routledge.
- Schön, D. (1987). Educating the reflective practitioner: Toward a new design for teaching and learning in the professions. San Francisco: Jossey Bass.
- Sharma, V., Rai, S. & Dev, A. (2012). A comprehensive study of artificial neural networks, Int. J. Adv. Res. Comput. Sci. Software Eng., 2, 278–284.
- Shermis, S. S. (1992). Critical thinking: helping students learn reflectively. Bloomington: EDINFO Press.
- Singh, R., Kainthola, A., & Singh, T. N. (2012). Estimation of elastic constant of rocks using an ANFIS approach. Applied Soft Computing, 12(1), 40-45.
- Sugeno, M. (1985). An introductory survey of fuzzy control. Information sciences, 36(1-2), 59-83.
- Özsoy, G. (2008). Üstbiliş. Türk Eğitim Bilimleri Dergisi, 6(4), 713-740.
- Özsoy, G., & Günindi, Y. (2011). Okulöncesi öğretmen adaylarının üstbilişsel farkındalık düzeyleri. İlköğretim Online, 10(2), 430-440.
- Viotti, P., Liuti, G., & Di Genova, P. (2002). Atmospheric urban pollution: applications of an artificial neural network (ANN) to the city of Perugia. Ecological Modelling, 148(1), 27-46.
- Walia, N., Singh, H., & Sharma, A. (2015). ANFIS: Adaptive neuro-fuzzy inference system-a survey. International Journal of Computer Applications, 123(13).
- Woolfolk, A. (2004). Educational psychology. Boston: Pearson, Allyn and Bacon.
- Yıldız, E., Akpınar, E., Tatar, N., & Ergin, Ö. (2009). İlköğretim öğrencileri için geliştirilen biliş üstü ölçeği’nin açımlayıcı ve doğrulayıcı faktör analizi. Kuram ve Uygulamada Eğitim Bilimleri, 9(3), 1573-1604.
- Zadeh, L. A. (1996). Fuzzy sets. In Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers by Lotfi A Zadeh (pp. 394-432).
- Zou, J., Han, Y., & So, S. S. (2008). Overview of artificial neural networks. Artificial Neural Networks, 14-22.