Review
BibTex RIS Cite

Geleceğin Malzemesi Olarak Doğal Biyokütlelerden Üretılen Karbon Kuantum Noktacık Ve Uygulama Alanları

Year 2023, , 23 - 29, 30.04.2023
https://doi.org/10.31590/ejosat.1175104

Abstract

Son yıllarda, nano karbon kuantum noktaları (KKN'lar), küçük boyut, floresan emisyon, kimyasal kararlılık, suda çözünürlük, kolay sentez ve işlevselleştirme gibi özelliklerinden dolayı artan bir ilgi görmektedir. Karbon noktaları olarak da adlandırılan karbon kuantum noktacığı (QD), 1-10 nm boyut aralığında bir tür sıfır boyutlu, yarı iletken kristal bir nanomalzeme olup, floresans özellikli nanopartiküllerin en yeni sınıfını oluşturmaktadır. Özel boyut aralıkları bu yapılara, optik özellikler açısından önemli faydalar sağlamaktadır. Biyokütle, çok yıllık ot, organik ev çöpü, tarım kalıntıları, balıkçılık, kümes hayvanları, hayvancılık, ormancılık ve ilgili endüstriler gibi çeşitli kaynaklardan elde edilebilen karmaşık, bol, heterojen, biyolojik olarak parçalanabilen ve biyo-organik bir maddedir. Biyokütle atığı, C-nokta üretimi için yenilenebilir, çevre dostu, bol miktarda bulunan ve zararsız bir karbon kaynağıdır. Kararlı fizikokimyasal özelliklere sahip olan karbon kuantum noktacıkların, su ortamında dağılma, biyouyumluluk, düşük toksisite, kimyasal inertlik, kolay fonksiyonelleştirme, çevre dostu ve çeşitli fotolüminesans özeliklerinden dolayı gelecekte pekçok uygulamalarda kullanılacağı öngörülmektedir.

References

  • Abdolmohammadi, M.H., Fallahian, F., Fakhroueian, Z., Kamalyan, M., Keyhanvar, P., M Harsini, F., Shafiekhani, A. 2017. Application of new ZnO nanoformulation and Ag/Fe/ZnO nanocomposites as water-based nanofluids to consider in vitro cytotoxic effects against MCF-7 breast cancer cells. Artificial Cells, Nanomedicine, and Biotechnology, 45 (8): 1769–1777.
  • Ansari, S., Bozkurt, F., Yazar, G., Ryan, V., Bhunia, A., Kokini, J. 2015. Probing the distribution of gliadin proteins in dough and baked bread using conjugated quantum dots as a labeling tool. Journal of Cereal Science, 63, 41e48.
  • Arkan, E., Barati, A., Rahmanpanah, M., Hosseinzdeh, L. 2018. Green Synthesis of Carbon Dots Derived from Walnut Oil and an Investigation of Their Cytotoxic and Apoptogenic Activities toward Cancer Cells. Advanced Pharmaceutical Bulletin 8(1):149-155.
  • Atabaev, T.S. 2018. Doped Carbon Dots for Sensing and Bioimaging Applications: A Minireview. Nanomaterials, 8(5), 342.
  • Biçer, A., Bilmişoğlu, K. 2020. Kırmızı soğandan karbon kuantum noktaların sentezi ve fotolüminesans özelliklerinin incelenmesi. Süleyman Demirel University Journal of Natural and Applied Sciences, 24(1), 48-56.
  • Dahan, M. 2003. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking, Science, 302 (5644): 442–5, 2003.
  • Du, F., Cheng, Z., Tan, W., Sun, L., Ruan, G. 2020. Development of sulfur doped carbon quantum dots for highly selective and sensitive fluorescent detection of Fe2+ and Fe3+ ions in oral ferrous gluconate samples. Spectrochimica Acta Part A: Molecular and Biomolecular, 226, 117602.
  • Frecker, T., Bailey, D., Arzeta-Ferrer, X., Mc Bride, J., Rosenthal, S.J. 2016. Review—Quantum dots and their application in lighting, displays, and biology. ECS Journal of Solid State Science and Technology, 5, 1, 3019-3031.
  • Grigsby, C.L., Ho, Y.P., Leong, K.W. 2012. Understanding nonviral nucleic acid delivery with quantum dot-FRET nanosensors. Nanomedicine, 7,4.
  • Hassan, M., Gomes, V.G., Dehghani, A., Ardekani, S.M. 2018. Engineering carbon quantum dots for photomediated theranostics. Nano Research, 11(1), 1–41.
  • He, Z., Cheng, J., Yan, W., Long, W., Ouyang, H., Hu, X., et al. 2021. One-step preparation of green tea ash derived and polymer functionalized carbon quantum dots via the thiol-ene click chemistry. Inorganic Chemistry Communications Journal, 130, 108743.
  • Huang, H., Lv, J. J., Zhou, D. L., Bao, N., Xu, Y., Wang, A. J., Feng, J. J. 2013. One-pot green synthesis of nitrogen-doped carbon nanoparticles as fluorescent probes for mercury ions. RSC Advances, 3 (44), 21691-21696.
  • Huang, P., Lin, J., Wang, X. S., Wang, Z., Zhang, C. L., He, M., Wang, K., Chen, F., Li, Z.M., Shen, G.X., Cui, D.X., Chen, X.Y. 2012. Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy. Advanced Materials, , 24, 5104–5110.
  • Iannazzo, D., Ziccarelli, I., Pistone, A. 2017. Graphene quantum dots: Multifunctional nanoplatforms for anticancer therapy. Journal of Materials Chemistry B, 5; 6471-6489. Jelinek Raz. 2017. Carbon Quantum Dots Synthesis, Properties and Applications., Springer.
  • Kang C., Huang Y., Yang H., Fang Yan X., Chen P. Z. A. 2020. Review of Carbon Dots Produced from Biomass Wastes, Nanomaterials, 10, 2316, 1-24.
  • Li, Y., Zhong, X., Rider, A. E., Furman, S. A., and Ostrikov, K. 2014. Fast, energy efficient synthesis of luminescent carbon quantum dots. Green Chemisty, 16, 2566–2570.
  • Li, Y., Zhong, X., Rider, A. E., Furman, S. A., and Ostrikov, K. 2014. Fast, energy efficient synthesis of luminescent carbon quantum dots. Green Chemistry, 16, 2566–2570.
  • Lim, S.Y., Shen, W., Gao, Z. 2015. Carbon quantum dots and their applications. Chemical Society Reviews Journal, 44, 362—381.
  • Nurunnabi, M. Parvez, K. Nafiujjaman M. Revuri, V. Khan, H. A. Feng, X. and Lee, Y. 2015. Bioapplication of graphene oxide derivatives: drug/gene delivery, imaging, polymeric modification, toxicology, therapeutic and challenges. Royal Society Of Chemistry, 5; 42141-42161.
  • Öksel, C., Koç, Y., Yağlı, H., Koç, A. 2018. Kuantum noktalı güneş hücreleri. Nevşehir Bilim ve Teknoloji Dergisi, 7(2) 174-182.
  • Özada Ç. 2016. Nükleer Görüntüleme Sistemlerinde Kuantum Noktaların Kullanılması. Bilim, Mühendislik ve Teknoloji Yayınları, 1(1), 1-11.
  • Pan M., Xie X., Liu K., Yang J., Hong L., Wang S. 2020. Fluorescent Carbon Quantum Dots—Synthesis, Functionalization and Sensing Application in Food Analysis. Nanomaterials, 10, 930. 1-25.
  • Panwar, N., Soehartono, A.M., Chan, K.K., Zeng, S., Xu, G., Qu, J., Coquet, P., Yong, K.T., Chen, X. 2019. Nanocarbons for biology and medicine: sensing, imaging, and drug delivery. Chemical Rewievs, 119,16, 9559-9556.
  • Qi, H., Teng, M., Liu, M., Liu, S., Li, J., Yu, H., Teng, C., Huang, Z., Liu, H., Shao, Q., et al. 2019. Biomass-derived nitrogen-doped carbon quantum dots: Highly selective fluorescent probe for detecting Fe3+ ions and tetracyclines. Journal of Colloid and Interface Science, 539, 332–341.
  • Reimann SM, Manninen M. Electronic structure of quantum dots. 2002. Reviews of Modern Physics 74(4):1283-1342.
  • Savla, R., Taratula, O., Garbuzenko, O., Minko T. 2011. Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer. Journal of Controlled Release, 153, 1 (15), 16-22.
  • Schaller, R.D., Klimov, V.I. 2004. High efficiency carrier multiplication in pbse nanocrystals: ımplications for solar energy conversion. Physıcal Revıew Letters, 92, 186601.
  • Shen, J., Shang, S., Chen, X., Wang, D., Cai, Y. 2017. Facile synthesis of fluorescence carbon dots from sweet potato for Fe3 + sensing and cell imaging. Materials Science and Engineering: C ,76, 856–864.
  • Sozer, N., Kokini, J. L. 2014. Use of quantum nanodot crystals as imaging probes for cereal proteins. Food Research International, 57, 142e151.
  • Tokumasu, F., Fairhurst, R., Ostera, G., Brittain, N., Hwang, J., Wellems, T., Dvorak, J. 2005. Band 3 modifications in Plasmodium falciparum-infected AA and CC erythrocytes assayed by autocorrelation analysis using quantum dots. Journal of Cell Science, 118 (5): 1091–1098.
  • Wagner, A.M., Knipe, J.M., Orive, G., Peppas, N.A. 2020. Quantum dots in biomedical applications. Acta Biomaterialia, 94, 44–63.
  • Wang , D., Chen, J.F., Dai, L. 2014. recent advances in graphene quantum dots for fluorescence bioimaging from cells through tissues to animals, Part. Particle & Particle Systems Characterization, 1-9.
  • Xu, X., Ray, R., Gu, Y., Ploehn, H. J., Gearheart, L., Raker, K., Scrivens, W. A. 2004. Electrophoretic analysis and purification of fluorescent single walled carbon nanotube fragments. Journal of the American Chemical Society, 126 (40), 12736-12737.
  • Xue, B., Yang, Y., Sun, Y., Fan, J., Li, X., and Zhang, Z. 2019. Photoluminescent lignin hybridized carbon quantum dots composites for bioimaging applications. International Journal of Biological Macromolecules, 122, 954–961.
  • Yao, H., Li, J., Song, Y., Zhao, H., Wei, Z., Li, X., et al. 2018. Synthesis of Ginsenoside re-based carbon dots applied for bioimaging and effective inhibition of cancer cells. International Journal of Nanomedicine, 13, 6249–6264.
  • Yang, L., & Li, Y. 2006. Simultaneous detection of Escherichia coli O157∶H7 and Salmonella Typhimurium using quantum dots as fluorescence labels. Analyst, 131, 394e401.
  • Zhisong, L., Chang Ming, L., Haifeng, B., Yan, Q., Yinghui, T., Xu, Y. 2008. Mechanism of antimicrobial activity of cdte quantum dots. Langmuir, 24 (10), 5445–5452.

Carbon Quantum Dots Produced From Natural Biomass As The Material of The Future and Application Areas

Year 2023, , 23 - 29, 30.04.2023
https://doi.org/10.31590/ejosat.1175104

Abstract

In recent years, nano carbon quantum dots (CQDs) have received increasing attention due to their small size, fluorescent emission, chemical stability, water solubility, easy synthesis and functionalization. Carbon quantum dot (QD), also called carbon dots, is a kind of zero-dimensional, semiconductor crystal nanomaterial in the size range of 1-10 nm, forming the newest class of fluorescent nanoparticles. Special size ranges provide these structures with significant benefits in terms of optical properties. Biomass is a complex, abundant, heterogeneous, biodegradable and bio-organic substance that may be obtained from diverse sources such as perennial grass, organic domestic garbage, residues of agriculture, fishery, poultry, animal husbandry, forestry and related industries. Biomass waste is a renewable, environmentally friendly, abundantly available and innocuous carbon source for C-dots production.
It is predicted that carbon quantum dots, which have stable physicochemical properties, will be used in many applications in the future due to their dispersion in the aquatic environment, biocompatibility, low toxicity, chemical inertness, easy functionalization, environmental friendliness and various photoluminescence properties.

References

  • Abdolmohammadi, M.H., Fallahian, F., Fakhroueian, Z., Kamalyan, M., Keyhanvar, P., M Harsini, F., Shafiekhani, A. 2017. Application of new ZnO nanoformulation and Ag/Fe/ZnO nanocomposites as water-based nanofluids to consider in vitro cytotoxic effects against MCF-7 breast cancer cells. Artificial Cells, Nanomedicine, and Biotechnology, 45 (8): 1769–1777.
  • Ansari, S., Bozkurt, F., Yazar, G., Ryan, V., Bhunia, A., Kokini, J. 2015. Probing the distribution of gliadin proteins in dough and baked bread using conjugated quantum dots as a labeling tool. Journal of Cereal Science, 63, 41e48.
  • Arkan, E., Barati, A., Rahmanpanah, M., Hosseinzdeh, L. 2018. Green Synthesis of Carbon Dots Derived from Walnut Oil and an Investigation of Their Cytotoxic and Apoptogenic Activities toward Cancer Cells. Advanced Pharmaceutical Bulletin 8(1):149-155.
  • Atabaev, T.S. 2018. Doped Carbon Dots for Sensing and Bioimaging Applications: A Minireview. Nanomaterials, 8(5), 342.
  • Biçer, A., Bilmişoğlu, K. 2020. Kırmızı soğandan karbon kuantum noktaların sentezi ve fotolüminesans özelliklerinin incelenmesi. Süleyman Demirel University Journal of Natural and Applied Sciences, 24(1), 48-56.
  • Dahan, M. 2003. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking, Science, 302 (5644): 442–5, 2003.
  • Du, F., Cheng, Z., Tan, W., Sun, L., Ruan, G. 2020. Development of sulfur doped carbon quantum dots for highly selective and sensitive fluorescent detection of Fe2+ and Fe3+ ions in oral ferrous gluconate samples. Spectrochimica Acta Part A: Molecular and Biomolecular, 226, 117602.
  • Frecker, T., Bailey, D., Arzeta-Ferrer, X., Mc Bride, J., Rosenthal, S.J. 2016. Review—Quantum dots and their application in lighting, displays, and biology. ECS Journal of Solid State Science and Technology, 5, 1, 3019-3031.
  • Grigsby, C.L., Ho, Y.P., Leong, K.W. 2012. Understanding nonviral nucleic acid delivery with quantum dot-FRET nanosensors. Nanomedicine, 7,4.
  • Hassan, M., Gomes, V.G., Dehghani, A., Ardekani, S.M. 2018. Engineering carbon quantum dots for photomediated theranostics. Nano Research, 11(1), 1–41.
  • He, Z., Cheng, J., Yan, W., Long, W., Ouyang, H., Hu, X., et al. 2021. One-step preparation of green tea ash derived and polymer functionalized carbon quantum dots via the thiol-ene click chemistry. Inorganic Chemistry Communications Journal, 130, 108743.
  • Huang, H., Lv, J. J., Zhou, D. L., Bao, N., Xu, Y., Wang, A. J., Feng, J. J. 2013. One-pot green synthesis of nitrogen-doped carbon nanoparticles as fluorescent probes for mercury ions. RSC Advances, 3 (44), 21691-21696.
  • Huang, P., Lin, J., Wang, X. S., Wang, Z., Zhang, C. L., He, M., Wang, K., Chen, F., Li, Z.M., Shen, G.X., Cui, D.X., Chen, X.Y. 2012. Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy. Advanced Materials, , 24, 5104–5110.
  • Iannazzo, D., Ziccarelli, I., Pistone, A. 2017. Graphene quantum dots: Multifunctional nanoplatforms for anticancer therapy. Journal of Materials Chemistry B, 5; 6471-6489. Jelinek Raz. 2017. Carbon Quantum Dots Synthesis, Properties and Applications., Springer.
  • Kang C., Huang Y., Yang H., Fang Yan X., Chen P. Z. A. 2020. Review of Carbon Dots Produced from Biomass Wastes, Nanomaterials, 10, 2316, 1-24.
  • Li, Y., Zhong, X., Rider, A. E., Furman, S. A., and Ostrikov, K. 2014. Fast, energy efficient synthesis of luminescent carbon quantum dots. Green Chemisty, 16, 2566–2570.
  • Li, Y., Zhong, X., Rider, A. E., Furman, S. A., and Ostrikov, K. 2014. Fast, energy efficient synthesis of luminescent carbon quantum dots. Green Chemistry, 16, 2566–2570.
  • Lim, S.Y., Shen, W., Gao, Z. 2015. Carbon quantum dots and their applications. Chemical Society Reviews Journal, 44, 362—381.
  • Nurunnabi, M. Parvez, K. Nafiujjaman M. Revuri, V. Khan, H. A. Feng, X. and Lee, Y. 2015. Bioapplication of graphene oxide derivatives: drug/gene delivery, imaging, polymeric modification, toxicology, therapeutic and challenges. Royal Society Of Chemistry, 5; 42141-42161.
  • Öksel, C., Koç, Y., Yağlı, H., Koç, A. 2018. Kuantum noktalı güneş hücreleri. Nevşehir Bilim ve Teknoloji Dergisi, 7(2) 174-182.
  • Özada Ç. 2016. Nükleer Görüntüleme Sistemlerinde Kuantum Noktaların Kullanılması. Bilim, Mühendislik ve Teknoloji Yayınları, 1(1), 1-11.
  • Pan M., Xie X., Liu K., Yang J., Hong L., Wang S. 2020. Fluorescent Carbon Quantum Dots—Synthesis, Functionalization and Sensing Application in Food Analysis. Nanomaterials, 10, 930. 1-25.
  • Panwar, N., Soehartono, A.M., Chan, K.K., Zeng, S., Xu, G., Qu, J., Coquet, P., Yong, K.T., Chen, X. 2019. Nanocarbons for biology and medicine: sensing, imaging, and drug delivery. Chemical Rewievs, 119,16, 9559-9556.
  • Qi, H., Teng, M., Liu, M., Liu, S., Li, J., Yu, H., Teng, C., Huang, Z., Liu, H., Shao, Q., et al. 2019. Biomass-derived nitrogen-doped carbon quantum dots: Highly selective fluorescent probe for detecting Fe3+ ions and tetracyclines. Journal of Colloid and Interface Science, 539, 332–341.
  • Reimann SM, Manninen M. Electronic structure of quantum dots. 2002. Reviews of Modern Physics 74(4):1283-1342.
  • Savla, R., Taratula, O., Garbuzenko, O., Minko T. 2011. Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer. Journal of Controlled Release, 153, 1 (15), 16-22.
  • Schaller, R.D., Klimov, V.I. 2004. High efficiency carrier multiplication in pbse nanocrystals: ımplications for solar energy conversion. Physıcal Revıew Letters, 92, 186601.
  • Shen, J., Shang, S., Chen, X., Wang, D., Cai, Y. 2017. Facile synthesis of fluorescence carbon dots from sweet potato for Fe3 + sensing and cell imaging. Materials Science and Engineering: C ,76, 856–864.
  • Sozer, N., Kokini, J. L. 2014. Use of quantum nanodot crystals as imaging probes for cereal proteins. Food Research International, 57, 142e151.
  • Tokumasu, F., Fairhurst, R., Ostera, G., Brittain, N., Hwang, J., Wellems, T., Dvorak, J. 2005. Band 3 modifications in Plasmodium falciparum-infected AA and CC erythrocytes assayed by autocorrelation analysis using quantum dots. Journal of Cell Science, 118 (5): 1091–1098.
  • Wagner, A.M., Knipe, J.M., Orive, G., Peppas, N.A. 2020. Quantum dots in biomedical applications. Acta Biomaterialia, 94, 44–63.
  • Wang , D., Chen, J.F., Dai, L. 2014. recent advances in graphene quantum dots for fluorescence bioimaging from cells through tissues to animals, Part. Particle & Particle Systems Characterization, 1-9.
  • Xu, X., Ray, R., Gu, Y., Ploehn, H. J., Gearheart, L., Raker, K., Scrivens, W. A. 2004. Electrophoretic analysis and purification of fluorescent single walled carbon nanotube fragments. Journal of the American Chemical Society, 126 (40), 12736-12737.
  • Xue, B., Yang, Y., Sun, Y., Fan, J., Li, X., and Zhang, Z. 2019. Photoluminescent lignin hybridized carbon quantum dots composites for bioimaging applications. International Journal of Biological Macromolecules, 122, 954–961.
  • Yao, H., Li, J., Song, Y., Zhao, H., Wei, Z., Li, X., et al. 2018. Synthesis of Ginsenoside re-based carbon dots applied for bioimaging and effective inhibition of cancer cells. International Journal of Nanomedicine, 13, 6249–6264.
  • Yang, L., & Li, Y. 2006. Simultaneous detection of Escherichia coli O157∶H7 and Salmonella Typhimurium using quantum dots as fluorescence labels. Analyst, 131, 394e401.
  • Zhisong, L., Chang Ming, L., Haifeng, B., Yan, Q., Yinghui, T., Xu, Y. 2008. Mechanism of antimicrobial activity of cdte quantum dots. Langmuir, 24 (10), 5445–5452.
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Seyithan Bingül 0000-0003-1288-6980

Yunus Önal 0000-0001-6342-6816

İncilay Gökbulut 0000-0003-4994-5788

Early Pub Date May 2, 2023
Publication Date April 30, 2023
Published in Issue Year 2023

Cite

APA Bingül, S., Önal, Y., & Gökbulut, İ. (2023). Geleceğin Malzemesi Olarak Doğal Biyokütlelerden Üretılen Karbon Kuantum Noktacık Ve Uygulama Alanları. Avrupa Bilim Ve Teknoloji Dergisi(50), 23-29. https://doi.org/10.31590/ejosat.1175104