Research Article
BibTex RIS Cite

Numerical Investigation of Tissue Heating with Coaxial Slot Antenna Using Microwave Heater

Year 2022, , 140 - 145, 31.10.2022
https://doi.org/10.31590/ejosat.1186519

Abstract

In hyperthermic oncology, the disease is treated by applying localized heating to the tumor, usually in combination with chemotherapy or radiotherapy. Heating is provided to the tumor from the part where a thin microwave antenna is placed. Here, a coagulated area is produced where cancer cells are killed. In this study, the temperature change, tissue deformation and specific absorption rate (SAR) of the tissue under the microwave effect were calculated. The liver tissue was modeled with a coaxial slot antenna at a frequency of 2.45 GHz and a numerical solution was made in the Comsol program. Result simulations of tissue after 2-4 and 6 minutes were obtained by taking different microwave powers (10-20-30W). It has been seen that the results obtained are compatible with the literature information.

References

  • Berjano, E.J., Hornero, F. (2004). Thermal-electrical modeling for epicardial atrial radiofrequency ablation, IEEE Trans. Biomed. Eng., 51(8), pp. 1348-1357.
  • Comsol Multiphysics 5.3. (2017). Heat Transfer Module User’s Guide.
  • Hurter, W., Reinbold, F., Lorenz, W.J. (1991). A Dippole Antenna for Interstitial Microwave Hyperthermia, IEEE Transactions on Microwave theory and Techniques, 39, pp.1048-1054.
  • Jesus M., Rubio, C. (2011). Coaxial Slot Antenna Design for Microwave Hyperthermia using Finite Difference Time-Domain and Finite Element Method, The Open Nanomedicine Journal, 3, pp. 2-9.
  • Jiao, T., Wang, H., Zhang, Y., Yu, X., Xue, H., Lv, H., Jing, X., Zhan, H., Wang, J. (2012). A coaxial-slot antenna for invasive microwave hyperthermia therapy, Journal of Biomedical Science and Engineering, 5(4), pp.198-202.
  • Kabiri, S., Rezaei, F. (2022). Liver cancer treatment with integration of laser emission and microwave irradiation with the aid of gold nanoparticles. Sci Rep, 12, 9271.
  • Pisa, S., Cavagnaro, M., Bernardi, P., Lin, J.C. (2001). A 915-MHz antenna for microwave thermal ablation treatment: physical design computer modeling and experimental measurement, IEEE Trans Biomed Eng, 48, pp.599-601.
  • Saito, K., Taniguchi, T., Yoshimura, H., Ito, K. (2001). Estimation of SAR Distribution of a Tip-Split Array Applicator for Microwave Coagulation Therapy Using the Finite Element Method, IEICE Trans. Electronics, vol. E84-C, 7, pp. 948–954.
  • Vogl, T.J., Helmberger, T.K., Mack, M.G., Reiser, M.F. (2008). Ablative techniques (percutaneous) Th ermal Ablative Techniques, in Percutaneous Tumor Ablation in Medical Radiology, Berlin, Germany: Springer, 2008, pp. 7–32.
  • Wongtrairat, W., Phasukkit, P., Tungjitkusolmun, S., Nantivatana, P. (2011). The Effect of Slot Sizes on Non-Asymmetry Slot Antenna for Microwave Coagulation Therapy, International Journal of Bioscience, Biochemistry and Bioinformatics, 1(3), pp.192-198.
  • Wright, A.S., Sampson, L. A., Warner, T.F., Mahvi, D.M., Lee, F.T. (2005). Radiofrequency versus microwave ablation in a hepatic Porcine Model, Radiology., 236, pp.132 -139.
  • Yadava, R.L. (2003). RF/microwaves in bio-medical applications. 8th International Conference on Electromagnetic Interference and Compatibility (INCEMIC), Yadava, 18-19 December, pp. 81-85.
  • Yang, D., Bertram, J.M., Converse, M.C., O’Rourke, A.P., Webster, J.G., Hagness, S.C., Will, J.A., Mahvi, D.M. (2006). A floating sleeve antenna yields localized hepatic microwave ablation, IEEE Trans. Biomed. Eng., 53(3), pp. 533-537.

Mikrodalga Isıtıcı Kullanılarak Koaksiyel Yuvalı Anten ile Doku Isıtılmasının Nümerik İncelenmesi

Year 2022, , 140 - 145, 31.10.2022
https://doi.org/10.31590/ejosat.1186519

Abstract

Hipertermik onkolojide tümöre genellikle kemoterapi veya radyoterapi ile kombinasyon halinde lokalize ısıtma uygulanarak hastalık tedavi edilir. Tümöre ince bir mikrodalga antenin yerleştirildiği kısımdan ısıtma sağlanır. Burada kanser hücrelerinin öldürüldüğü pıhtılaşmış bir bölge üretilir. Yapılan bu çalışmada mikrodalga etkisi altında dokunun sıcaklık değişimi, doku deformasyonu ve özgül absorpsiyon oranı (SAR) hesaplanmıştır. 2.45 GHz frekansında koaksiyel yuvalı anten ile karaciğer dokusu modellenerek Comsol programında nümerik olarak çözüm yapılmıştır. Farklı mikrodalga güçleri (10-20-30W) alınarak 2-4 ve 6 dakika sonrasına ait dokunun sonuç simülasyonları elde edilmiştir. Elde edilen sonuçların literatür bilgileri ile uyumlu olduğu görülmüştür.

References

  • Berjano, E.J., Hornero, F. (2004). Thermal-electrical modeling for epicardial atrial radiofrequency ablation, IEEE Trans. Biomed. Eng., 51(8), pp. 1348-1357.
  • Comsol Multiphysics 5.3. (2017). Heat Transfer Module User’s Guide.
  • Hurter, W., Reinbold, F., Lorenz, W.J. (1991). A Dippole Antenna for Interstitial Microwave Hyperthermia, IEEE Transactions on Microwave theory and Techniques, 39, pp.1048-1054.
  • Jesus M., Rubio, C. (2011). Coaxial Slot Antenna Design for Microwave Hyperthermia using Finite Difference Time-Domain and Finite Element Method, The Open Nanomedicine Journal, 3, pp. 2-9.
  • Jiao, T., Wang, H., Zhang, Y., Yu, X., Xue, H., Lv, H., Jing, X., Zhan, H., Wang, J. (2012). A coaxial-slot antenna for invasive microwave hyperthermia therapy, Journal of Biomedical Science and Engineering, 5(4), pp.198-202.
  • Kabiri, S., Rezaei, F. (2022). Liver cancer treatment with integration of laser emission and microwave irradiation with the aid of gold nanoparticles. Sci Rep, 12, 9271.
  • Pisa, S., Cavagnaro, M., Bernardi, P., Lin, J.C. (2001). A 915-MHz antenna for microwave thermal ablation treatment: physical design computer modeling and experimental measurement, IEEE Trans Biomed Eng, 48, pp.599-601.
  • Saito, K., Taniguchi, T., Yoshimura, H., Ito, K. (2001). Estimation of SAR Distribution of a Tip-Split Array Applicator for Microwave Coagulation Therapy Using the Finite Element Method, IEICE Trans. Electronics, vol. E84-C, 7, pp. 948–954.
  • Vogl, T.J., Helmberger, T.K., Mack, M.G., Reiser, M.F. (2008). Ablative techniques (percutaneous) Th ermal Ablative Techniques, in Percutaneous Tumor Ablation in Medical Radiology, Berlin, Germany: Springer, 2008, pp. 7–32.
  • Wongtrairat, W., Phasukkit, P., Tungjitkusolmun, S., Nantivatana, P. (2011). The Effect of Slot Sizes on Non-Asymmetry Slot Antenna for Microwave Coagulation Therapy, International Journal of Bioscience, Biochemistry and Bioinformatics, 1(3), pp.192-198.
  • Wright, A.S., Sampson, L. A., Warner, T.F., Mahvi, D.M., Lee, F.T. (2005). Radiofrequency versus microwave ablation in a hepatic Porcine Model, Radiology., 236, pp.132 -139.
  • Yadava, R.L. (2003). RF/microwaves in bio-medical applications. 8th International Conference on Electromagnetic Interference and Compatibility (INCEMIC), Yadava, 18-19 December, pp. 81-85.
  • Yang, D., Bertram, J.M., Converse, M.C., O’Rourke, A.P., Webster, J.G., Hagness, S.C., Will, J.A., Mahvi, D.M. (2006). A floating sleeve antenna yields localized hepatic microwave ablation, IEEE Trans. Biomed. Eng., 53(3), pp. 533-537.
There are 13 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Burak Türkan 0000-0002-4019-7835

Publication Date October 31, 2022
Published in Issue Year 2022

Cite

APA Türkan, B. (2022). Mikrodalga Isıtıcı Kullanılarak Koaksiyel Yuvalı Anten ile Doku Isıtılmasının Nümerik İncelenmesi. Avrupa Bilim Ve Teknoloji Dergisi(42), 140-145. https://doi.org/10.31590/ejosat.1186519